Gullible 发表于 2025-3-26 23:31:32
tics..Includes supplementary material: .Systematically constructing an optimal theory, this monograph develops and explores several approaches to Hardy spaces in the setting of Alhlfors-regular quasi-metric spaces. The text is divided into two main parts, with the first part providing atomic, molecuarchenemy 发表于 2025-3-27 04:30:06
http://reply.papertrans.cn/84/8317/831695/831695_32.pngObliterate 发表于 2025-3-27 09:02:41
http://reply.papertrans.cn/84/8317/831695/831695_33.pngcognizant 发表于 2025-3-27 09:37:21
http://reply.papertrans.cn/84/8317/831695/831695_34.pngCalculus 发表于 2025-3-27 16:28:57
http://reply.papertrans.cn/84/8317/831695/831695_35.pngGalactogogue 发表于 2025-3-27 21:09:51
Peter A. Schockcontains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalitSpina-Bifida 发表于 2025-3-28 01:55:21
Peter A. Schock scales, this book establishes new conditions that lead to sThe book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and LittlewooChromatic 发表于 2025-3-28 05:14:26
http://reply.papertrans.cn/84/8317/831695/831695_38.png