使入伍 发表于 2025-3-21 18:36:18
书目名称Risk and Portfolio Analysis影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0830740<br><br> <br><br>书目名称Risk and Portfolio Analysis影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0830740<br><br> <br><br>书目名称Risk and Portfolio Analysis网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0830740<br><br> <br><br>书目名称Risk and Portfolio Analysis网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0830740<br><br> <br><br>书目名称Risk and Portfolio Analysis被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0830740<br><br> <br><br>书目名称Risk and Portfolio Analysis被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0830740<br><br> <br><br>书目名称Risk and Portfolio Analysis年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0830740<br><br> <br><br>书目名称Risk and Portfolio Analysis年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0830740<br><br> <br><br>书目名称Risk and Portfolio Analysis读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0830740<br><br> <br><br>书目名称Risk and Portfolio Analysis读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0830740<br><br> <br><br>Antagonism 发表于 2025-3-21 23:29:52
Henrik Hult,Filip Lindskog,Carl Johan RehnCombines useful practical insights with rigorous yet elementary mathematics.The presentation of the theory goes hand in hand with numerous real-world examples.The books aims to demystify many commonlyUrgency 发表于 2025-3-22 04:26:10
978-1-4939-0031-2Springer Science+Business Media New York 2012Mets552 发表于 2025-3-22 06:02:14
http://reply.papertrans.cn/84/8308/830740/830740_4.pngJIBE 发表于 2025-3-22 09:26:50
http://reply.papertrans.cn/84/8308/830740/830740_5.pngAVID 发表于 2025-3-22 15:53:49
http://reply.papertrans.cn/84/8308/830740/830740_6.png里程碑 发表于 2025-3-22 18:14:02
https://doi.org/10.1007/978-1-4614-4103-8Financial engineering; Financial statistics; Insurance mathematics; Portfolio optimization; Risk managem起草 发表于 2025-3-23 00:08:50
http://reply.papertrans.cn/84/8308/830740/830740_8.pngheirloom 发表于 2025-3-23 03:48:08
http://reply.papertrans.cn/84/8308/830740/830740_9.pngTOM 发表于 2025-3-23 09:12:40
Convex Optimizationif both the function to be minimized and the set over which the minimization is done are convex. The minimization problem is in this case called a convex optimization problem. This chapter presents basic results for solving convex optimization problems that will be applied in subsequent chapters.