MOTTO 发表于 2025-3-25 07:02:30

Riemannian Topology and Geometric Structures on Manifolds978-0-8176-4743-8Series ISSN 0743-1643 Series E-ISSN 2296-505X

STIT 发表于 2025-3-25 10:20:43

,Quaternionic Kähler Moduli Spaces,ra and Sabharwal. This class yields an example in real dimension 4. for every projective special Kähler manifold of real dimension 2.-2 and can be applied in particular to the case of the moduli space of complex structures on a Calabi—Yau threefold.

偶然 发表于 2025-3-25 12:47:43

http://reply.papertrans.cn/84/8304/830323/830323_23.png

dictator 发表于 2025-3-25 17:41:15

http://reply.papertrans.cn/84/8304/830323/830323_24.png

fabricate 发表于 2025-3-25 20:05:57

Positive Sasakian Structures on 5-Manifolds,The aim of this paper is to study 5-manifolds that carry a positive Sasakian structure. Strong restrictions are derived for the integral hemology groups. In some cases, all positive sasakian structures are classified. A key step is the study of log Del Pezzo surfaces whose boundary divisor contains positive genus curves.

群居动物 发表于 2025-3-26 03:38:06

http://reply.papertrans.cn/84/8304/830323/830323_26.png

Coeval 发表于 2025-3-26 05:09:52

Krzysztof Galicki,Santiago R. SimancaFocuses on fundamental ideas and recent advances.Includes and discusses open problems in Riemannian topology and related areas.Contains original survey articles by distinguished researchers

白杨 发表于 2025-3-26 09:45:02

Specifically, consensus and sharing problems are formulated under the ADMM framework for horizontally and vertically partitioned data, respectively. We further introduce secure multiparty computation (SMC) protocols to protect the intermediary results in communication. We also introduce asynchronous

欺骗手段 发表于 2025-3-26 13:36:41

http://reply.papertrans.cn/84/8304/830323/830323_29.png

CRUMB 发表于 2025-3-26 18:43:06

http://reply.papertrans.cn/84/8304/830323/830323_30.png
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Riemannian Topology and Geometric Structures on Manifolds; Krzysztof Galicki,Santiago R. Simanca Book 2009 Birkhäuser Boston 2009 Area.Coh