颂歌 发表于 2025-3-21 16:28:32
书目名称Riemannian Manifolds and Homogeneous Geodesics影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0830320<br><br> <br><br>书目名称Riemannian Manifolds and Homogeneous Geodesics影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0830320<br><br> <br><br>书目名称Riemannian Manifolds and Homogeneous Geodesics网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0830320<br><br> <br><br>书目名称Riemannian Manifolds and Homogeneous Geodesics网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0830320<br><br> <br><br>书目名称Riemannian Manifolds and Homogeneous Geodesics被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0830320<br><br> <br><br>书目名称Riemannian Manifolds and Homogeneous Geodesics被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0830320<br><br> <br><br>书目名称Riemannian Manifolds and Homogeneous Geodesics年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0830320<br><br> <br><br>书目名称Riemannian Manifolds and Homogeneous Geodesics年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0830320<br><br> <br><br>书目名称Riemannian Manifolds and Homogeneous Geodesics读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0830320<br><br> <br><br>书目名称Riemannian Manifolds and Homogeneous Geodesics读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0830320<br><br> <br><br>FEAS 发表于 2025-3-21 23:06:11
http://reply.papertrans.cn/84/8304/830320/830320_2.pngPTCA635 发表于 2025-3-22 03:41:59
http://reply.papertrans.cn/84/8304/830320/830320_3.pngMere仅仅 发表于 2025-3-22 08:25:33
http://reply.papertrans.cn/84/8304/830320/830320_4.pngnautical 发表于 2025-3-22 09:17:10
http://reply.papertrans.cn/84/8304/830320/830320_5.pngGUILE 发表于 2025-3-22 14:50:02
http://reply.papertrans.cn/84/8304/830320/830320_6.png错 发表于 2025-3-22 18:32:59
Book 2020ailed introduction to homogeneous geodesics, that is, geodesics that are integral curves of Killing vector fields, presenting both classical and modern results, some very recent, many of which are due to the authors. The main focus is on the class of Riemannian manifolds with homogeneous geodesics aLVAD360 发表于 2025-3-22 21:41:30
Riemannian Manifolds,e basic results on smooth manifolds, manifolds with covariant derivatives, and Riemannian manifolds that will be needed later. In particular, we consider the Lie algebra of smooth vector fields on smooth manifolds, the Levi-Civita connection on Riemannian manifolds, their curvature tensors, sectionaHemoptysis 发表于 2025-3-23 05:05:33
http://reply.papertrans.cn/84/8304/830320/830320_9.png演绎 发表于 2025-3-23 09:18:05
Isometric Flows and Killing Vector Fields on Riemannian Manifolds,ions, and the sectional and Ricci curvatures. Special attention is paid to Killing vector fields of constant length, the corresponding isometric flows on complete smooth Riemannian anifolds, and their connections with Clifford–Wolf translations.