Menthol 发表于 2025-3-21 19:04:20

书目名称Riemannian Geometry of Contact and Symplectic Manifolds影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0830317<br><br>        <br><br>书目名称Riemannian Geometry of Contact and Symplectic Manifolds影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0830317<br><br>        <br><br>书目名称Riemannian Geometry of Contact and Symplectic Manifolds网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0830317<br><br>        <br><br>书目名称Riemannian Geometry of Contact and Symplectic Manifolds网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0830317<br><br>        <br><br>书目名称Riemannian Geometry of Contact and Symplectic Manifolds被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0830317<br><br>        <br><br>书目名称Riemannian Geometry of Contact and Symplectic Manifolds被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0830317<br><br>        <br><br>书目名称Riemannian Geometry of Contact and Symplectic Manifolds年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0830317<br><br>        <br><br>书目名称Riemannian Geometry of Contact and Symplectic Manifolds年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0830317<br><br>        <br><br>书目名称Riemannian Geometry of Contact and Symplectic Manifolds读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0830317<br><br>        <br><br>书目名称Riemannian Geometry of Contact and Symplectic Manifolds读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0830317<br><br>        <br><br>

带来墨水 发表于 2025-3-21 21:54:00

http://reply.papertrans.cn/84/8304/830317/830317_2.png

Palter 发表于 2025-3-22 03:41:26

http://reply.papertrans.cn/84/8304/830317/830317_3.png

nitroglycerin 发表于 2025-3-22 07:43:26

http://reply.papertrans.cn/84/8304/830317/830317_4.png

Myofibrils 发表于 2025-3-22 12:03:07

3-Sasakian Manifolds,As with the last chapter we will give more of a survey and only a few proofs. Another survey of both history and recent work on 3-Sasakian manifolds is Boyer and Galicki .

开始没有 发表于 2025-3-22 13:56:41

http://reply.papertrans.cn/84/8304/830317/830317_6.png

值得 发表于 2025-3-22 20:41:23

https://doi.org/10.1007/978-1-4757-3604-5Differential Geometry; Differential Topology; Manifolds; Riemannian geometry; curvature; manifold

漂浮 发表于 2025-3-22 23:35:59

Symplectic Manifolds,onal differentiable (..) manifold ..n together with a global 2-form Ω which is closed and of maximal rank, i.e., .Ω = 0, Ω. ≠ 0. By a .: (.., Ω.) → (.., Ω.) we mean a diffeomorphism . : .. → .. such that .*Ω. =Ω..

Cardioplegia 发表于 2025-3-23 04:42:21

Contact Manifolds, manifold is orientable. Also . has rank 2. on the Grassmann algebra ∧ ... at each point . ∈ . and thus we have a 1-dimensional subspace, {. ∈ ...|.(...) = 0}, on which . ≠ 0 and which is complementary to the subspace on which . = 0. Therefore choosing .. in this subspace normalized by .(..) = 1 we have a global vector field . satisfying ..

抛媚眼 发表于 2025-3-23 08:50:43

Associated Metrics,rtant for our study; many of these were already mentioned in Chapter 1. For more detail the reader is referred to Gray and Hervella , Kobayashi-Nomizu and Kobayashi-Wu ; also, despite its classical nature, the book of Yano contains helpful information on many of these structures.
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Riemannian Geometry of Contact and Symplectic Manifolds; David E. Blair Book 20021st edition Springer Science+Business Media New York 2002