hearing-aid 发表于 2025-3-21 16:24:27
书目名称Riemannian Geometry影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0830309<br><br> <br><br>书目名称Riemannian Geometry影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0830309<br><br> <br><br>书目名称Riemannian Geometry网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0830309<br><br> <br><br>书目名称Riemannian Geometry网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0830309<br><br> <br><br>书目名称Riemannian Geometry被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0830309<br><br> <br><br>书目名称Riemannian Geometry被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0830309<br><br> <br><br>书目名称Riemannian Geometry年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0830309<br><br> <br><br>书目名称Riemannian Geometry年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0830309<br><br> <br><br>书目名称Riemannian Geometry读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0830309<br><br> <br><br>书目名称Riemannian Geometry读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0830309<br><br> <br><br>使隔离 发表于 2025-3-21 21:11:54
Curvature,ng curvature is the central theme of Riemannian geometry. The idea of a Riemannian metric having curvature, while intuitively appealing and natural, is for most people the stumbling block for further progress into the realm of geometry.不足的东西 发表于 2025-3-22 02:34:06
http://reply.papertrans.cn/84/8304/830309/830309_3.png粘连 发表于 2025-3-22 07:16:41
http://reply.papertrans.cn/84/8304/830309/830309_4.pngCRAB 发表于 2025-3-22 09:11:01
http://reply.papertrans.cn/84/8304/830309/830309_5.pngEXALT 发表于 2025-3-22 15:11:49
Sectional Curvature Comparison II, Gromoll. Next, we discuss Gromov’s finiteness theorem for bounds on Betti numbers and generators for the fundamental group Finally, we show that these techniques can be adapted to prove the Grove-Petersen homotopy finiteness theorem.谄媚于人 发表于 2025-3-22 17:35:55
http://reply.papertrans.cn/84/8304/830309/830309_7.png黑豹 发表于 2025-3-22 23:50:20
Curvature,confine ourselves to infinitesimal considerations. The most important and often also least understood object of Riemannian geometry is that of the Riemannian connection. From this concept it will be possible to define curvature and more familiar items like gradients and Hessians of functions. Studyi煞费苦心 发表于 2025-3-23 03:11:36
http://reply.papertrans.cn/84/8304/830309/830309_9.png表主动 发表于 2025-3-23 06:01:17
Hypersurfaces,nvex immersions are embeddings of spheres. We then establish a connection between convexity and positivity of the intrinsic curvatures. This connection will enable us to see that ℂ.. and the Berger spheres are not even locally hypersurfaces in Euclidean space. We give a brief description of some cl