impaction 发表于 2025-3-23 10:27:17
http://reply.papertrans.cn/84/8304/830307/830307_11.pngMitigate 发表于 2025-3-23 13:56:01
Curvature,e . is a vector field such that . = .. We already met in 2.64 the second covariant derivative of a function, which is a symmetric 2-tensor. This property is no more true for the second derivative of a tensor. However, . only depends on ..针叶 发表于 2025-3-23 21:07:21
Analysis on Manifolds and the Ricci Curvature,ignore mathematical beings which locally behave like domains on ., just as manifolds locally behave like .. On the other hand, when doing Analysis on manifolds, it may useful to cut them into small pieces (cf. for example 4.65 and 4.68 below). These pieces are no more manifolds, but they will be manifolds with boundary.Hyperopia 发表于 2025-3-23 22:40:49
0172-5939 m of (sn, can) F. THE MINIMAX PRINCIPLE 177 The basic statements VIII G. THE RICCI CURVATURE AND EIGENVALUES ESTIMATES Introduction 181 Bishop‘s inequality and 978-3-642-97026-9Series ISSN 0172-5939 Series E-ISSN 2191-6675Decrepit 发表于 2025-3-24 03:56:08
http://reply.papertrans.cn/84/8304/830307/830307_15.png精致 发表于 2025-3-24 08:30:16
Sylvestre Gallot,Dominique Hulin,Jacques Lafontaine泰然自若 发表于 2025-3-24 12:55:28
http://reply.papertrans.cn/84/8304/830307/830307_17.pnglocus-ceruleus 发表于 2025-3-24 16:08:15
http://reply.papertrans.cn/84/8304/830307/830307_18.png可以任性 发表于 2025-3-24 21:20:33
http://reply.papertrans.cn/84/8304/830307/830307_19.png十字架 发表于 2025-3-25 00:52:20
http://reply.papertrans.cn/84/8304/830307/830307_20.png