银河 发表于 2025-3-21 18:43:49
书目名称Riemannian Geometry影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0830304<br><br> <br><br>书目名称Riemannian Geometry影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0830304<br><br> <br><br>书目名称Riemannian Geometry网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0830304<br><br> <br><br>书目名称Riemannian Geometry网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0830304<br><br> <br><br>书目名称Riemannian Geometry被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0830304<br><br> <br><br>书目名称Riemannian Geometry被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0830304<br><br> <br><br>书目名称Riemannian Geometry年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0830304<br><br> <br><br>书目名称Riemannian Geometry年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0830304<br><br> <br><br>书目名称Riemannian Geometry读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0830304<br><br> <br><br>书目名称Riemannian Geometry读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0830304<br><br> <br><br>魔鬼在游行 发表于 2025-3-21 20:29:10
Analysis on Manifolds and the Ricci Curvature, the properties of the Laplacian on a bounded Euclidean domain and on a compact Riemannian manifold are very similar, and so are the techniques of proofs. We can say that the difficulties of the latter case, compared with the former, are essentially conceptual.为敌 发表于 2025-3-22 03:14:03
Textbook 19902nd editionry. Also, we present a -soft-proof of the Paul Levy-Gromov isoperimetric inequal ity, kindly communicated by G. Besson. Several people helped us to find bugs in the. first edition. They are not responsible for the persisting ones! Among them, we particularly thank Pierre Arnoux and Stefano Marchiaf掺假 发表于 2025-3-22 06:46:10
http://reply.papertrans.cn/84/8304/830304/830304_4.png词根词缀法 发表于 2025-3-22 10:03:18
http://reply.papertrans.cn/84/8304/830304/830304_5.pngGingivitis 发表于 2025-3-22 16:34:08
Analysis on Manifolds and the Ricci Curvature, the properties of the Laplacian on a bounded Euclidean domain and on a compact Riemannian manifold are very similar, and so are the techniques of proofs. We can say that the difficulties of the latter case, compared with the former, are essentially conceptual.HEDGE 发表于 2025-3-22 19:55:53
Springer-Verlag Berlin Heidelberg 1990GROUP 发表于 2025-3-23 00:37:15
http://reply.papertrans.cn/84/8304/830304/830304_8.png蛛丝 发表于 2025-3-23 04:01:10
Riemannian Metrics,The Pythagorus theorem just says that the squared length of an infinitesimal vector, say in .., whose components are . and ., is .. + .. + ... Thus, the length of a parameterized curve .(.) = (.(.), .(.), .(.)) is given by the integral ..FLEET 发表于 2025-3-23 06:01:09
Curvature,A parallel vector field in .. is just a constant field. Now, on a surface, there are generally no (even local) parallel vector fields. How much the parallel transport of a field along a small closed curve differ from the identity is measured in terms of the curvature of the surface, a function .: . → ..