拖累
发表于 2025-3-21 16:37:15
书目名称Reviews of Environmental Contamination and Toxicology Volume 233影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0829606<br><br> <br><br>书目名称Reviews of Environmental Contamination and Toxicology Volume 233影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0829606<br><br> <br><br>书目名称Reviews of Environmental Contamination and Toxicology Volume 233网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0829606<br><br> <br><br>书目名称Reviews of Environmental Contamination and Toxicology Volume 233网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0829606<br><br> <br><br>书目名称Reviews of Environmental Contamination and Toxicology Volume 233被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0829606<br><br> <br><br>书目名称Reviews of Environmental Contamination and Toxicology Volume 233被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0829606<br><br> <br><br>书目名称Reviews of Environmental Contamination and Toxicology Volume 233年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0829606<br><br> <br><br>书目名称Reviews of Environmental Contamination and Toxicology Volume 233年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0829606<br><br> <br><br>书目名称Reviews of Environmental Contamination and Toxicology Volume 233读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0829606<br><br> <br><br>书目名称Reviews of Environmental Contamination and Toxicology Volume 233读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0829606<br><br> <br><br>
ethereal
发表于 2025-3-21 21:54:24
http://reply.papertrans.cn/83/8297/829606/829606_2.png
dragon
发表于 2025-3-22 00:37:08
https://doi.org/10.1007/978-3-319-10479-9Chitosan; Hexavalent Chromium Resistance; Ozone Phytotoxicity; Seafood waste; Street Sweeping; ecotoxicol
extinguish
发表于 2025-3-22 06:37:14
978-3-319-36289-2Springer International Publishing Switzerland 2015
清晰
发表于 2025-3-22 11:07:32
http://reply.papertrans.cn/83/8297/829606/829606_5.png
包租车船
发表于 2025-3-22 16:21:33
http://reply.papertrans.cn/83/8297/829606/829606_6.png
不近人情
发表于 2025-3-22 18:33:32
Uehara by showing that we can decide in polynomial time whether an independent set . of an interval graph can be transformed into another independent set .. Moreover, we answer similar questions by showing that: (i) determining if there exists a token sliding transformation between every pair of .-i
Condescending
发表于 2025-3-23 00:15:16
Soon Kong Yong,Manoj Shrivastava,Prashant Srivastava,Anitha Kunhikrishnan,Nanthi Bolans for treewidth, pathwidth, search number, vertex search number, node search number, cutwidth, modified cutwidth, vertex separation number, gate matrix layout, and progressive black-white pebbling, where in each case the parameter . is a fixed constant.
不如乐死去
发表于 2025-3-23 02:07:14
http://reply.papertrans.cn/83/8297/829606/829606_9.png
阻止
发表于 2025-3-23 09:25:11
Steven J. Calvillo,E. Spencer Williams,Bryan W. Brooksl the search numbers above. More precisely, for any graph ., .(.) = .(.) = .(.) ≤ .(.) ≤ .(.) = .(.) ≤ .(.) = .(.). The first two inequalities can be strict. Motivated by the fact that connected graph searching and monotone internal graph searching are both minor closed ., we provide a complete char