hector 发表于 2025-3-21 17:03:13
书目名称Research in Shape Analysis影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0828006<br><br> <br><br>书目名称Research in Shape Analysis影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0828006<br><br> <br><br>书目名称Research in Shape Analysis网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0828006<br><br> <br><br>书目名称Research in Shape Analysis网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0828006<br><br> <br><br>书目名称Research in Shape Analysis被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0828006<br><br> <br><br>书目名称Research in Shape Analysis被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0828006<br><br> <br><br>书目名称Research in Shape Analysis年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0828006<br><br> <br><br>书目名称Research in Shape Analysis年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0828006<br><br> <br><br>书目名称Research in Shape Analysis读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0828006<br><br> <br><br>书目名称Research in Shape Analysis读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0828006<br><br> <br><br>启发 发表于 2025-3-22 00:13:15
http://reply.papertrans.cn/83/8281/828006/828006_2.png高贵领导 发表于 2025-3-22 01:46:33
http://reply.papertrans.cn/83/8281/828006/828006_3.png使入迷 发表于 2025-3-22 06:21:50
http://reply.papertrans.cn/83/8281/828006/828006_4.png面包屑 发表于 2025-3-22 10:14:16
http://reply.papertrans.cn/83/8281/828006/828006_5.png向下 发表于 2025-3-22 14:03:04
Exploring 2D Shape Complexity,stablished library of shapes, using k-medoids clustering to understand what aspects of shape complexity are captured by each notion. Our contributions include a new measure of complexity based on the Blum medial axis and the notion of . as captured by histograms at multiple scales rather than a single numerical value.ALLEY 发表于 2025-3-22 18:25:52
http://reply.papertrans.cn/83/8281/828006/828006_7.pngphytochemicals 发表于 2025-3-23 00:33:57
http://reply.papertrans.cn/83/8281/828006/828006_8.pngAbbreviate 发表于 2025-3-23 02:05:13
http://reply.papertrans.cn/83/8281/828006/828006_9.pngobstinate 发表于 2025-3-23 07:03:58
Convolution Surfaces with Varying Radius: Formulae for Skeletons Made of Arcs of Circles and Line S set of a convolution field. Varying the radius or making the surface scale sensitive along the skeleton are desirable features. This article provides the related necessary closed-form formulae of the convolution fields when the skeleton is made of arcs of circle and line segments. For the family of