T-Lymphocyte 发表于 2025-3-21 19:25:29

书目名称Representation of Lie Groups and Special Functions影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0827437<br><br>        <br><br>书目名称Representation of Lie Groups and Special Functions影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0827437<br><br>        <br><br>书目名称Representation of Lie Groups and Special Functions网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0827437<br><br>        <br><br>书目名称Representation of Lie Groups and Special Functions网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0827437<br><br>        <br><br>书目名称Representation of Lie Groups and Special Functions被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0827437<br><br>        <br><br>书目名称Representation of Lie Groups and Special Functions被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0827437<br><br>        <br><br>书目名称Representation of Lie Groups and Special Functions年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0827437<br><br>        <br><br>书目名称Representation of Lie Groups and Special Functions年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0827437<br><br>        <br><br>书目名称Representation of Lie Groups and Special Functions读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0827437<br><br>        <br><br>书目名称Representation of Lie Groups and Special Functions读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0827437<br><br>        <br><br>

顾客 发表于 2025-3-21 23:12:44

N. Ja. Vilenkin,A. U. Klimyk5), this being about equidistant in sequence to the mammalian β1, β2 and β3. However, while β2 and β3 homologues can be found from chicken brain cDNA (6,7), neither a chicken β1 nor a mammalian β4 have been obtainable by cross-hybridisation and it is provisionally assumed that β1 in the bird has und

约会 发表于 2025-3-22 03:10:30

http://reply.papertrans.cn/83/8275/827437/827437_3.png

切掉 发表于 2025-3-22 05:28:23

http://reply.papertrans.cn/83/8275/827437/827437_4.png

Harridan 发表于 2025-3-22 11:03:08

http://reply.papertrans.cn/83/8275/827437/827437_5.png

澄清 发表于 2025-3-22 16:52:08

http://reply.papertrans.cn/83/8275/827437/827437_6.png

培养 发表于 2025-3-22 19:05:50

http://reply.papertrans.cn/83/8275/827437/827437_7.png

下垂 发表于 2025-3-23 01:02:47

,Representations of the Groups ,(1,1) and ,(2, ℝ) in Mixed Bases. The Hypergeometric Function,hich diagonalizes the operators .(g(.)), .(.) = diag(./2, ./2). Now we study other realizations of these representations. It will be convenient for us to consider representations . of the group .(2, ℝ) which is isomorphic to .(1, 1). Subgroups and decompositions, considered below, have simpler form

鬼魂 发表于 2025-3-23 01:46:23

http://reply.papertrans.cn/83/8275/827437/827437_9.png

强制令 发表于 2025-3-23 08:13:47

978-94-010-5566-6Springer Science+Business Media Dordrecht 1991
页: [1] 2 3 4 5
查看完整版本: Titlebook: Representation of Lie Groups and Special Functions; Volume 1: Simplest L N. Ja. Vilenkin,A. U. Klimyk Book 1991 Springer Science+Business M