T-Lymphocyte 发表于 2025-3-21 19:25:29
书目名称Representation of Lie Groups and Special Functions影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0827437<br><br> <br><br>书目名称Representation of Lie Groups and Special Functions影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0827437<br><br> <br><br>书目名称Representation of Lie Groups and Special Functions网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0827437<br><br> <br><br>书目名称Representation of Lie Groups and Special Functions网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0827437<br><br> <br><br>书目名称Representation of Lie Groups and Special Functions被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0827437<br><br> <br><br>书目名称Representation of Lie Groups and Special Functions被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0827437<br><br> <br><br>书目名称Representation of Lie Groups and Special Functions年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0827437<br><br> <br><br>书目名称Representation of Lie Groups and Special Functions年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0827437<br><br> <br><br>书目名称Representation of Lie Groups and Special Functions读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0827437<br><br> <br><br>书目名称Representation of Lie Groups and Special Functions读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0827437<br><br> <br><br>顾客 发表于 2025-3-21 23:12:44
N. Ja. Vilenkin,A. U. Klimyk5), this being about equidistant in sequence to the mammalian β1, β2 and β3. However, while β2 and β3 homologues can be found from chicken brain cDNA (6,7), neither a chicken β1 nor a mammalian β4 have been obtainable by cross-hybridisation and it is provisionally assumed that β1 in the bird has und约会 发表于 2025-3-22 03:10:30
http://reply.papertrans.cn/83/8275/827437/827437_3.png切掉 发表于 2025-3-22 05:28:23
http://reply.papertrans.cn/83/8275/827437/827437_4.pngHarridan 发表于 2025-3-22 11:03:08
http://reply.papertrans.cn/83/8275/827437/827437_5.png澄清 发表于 2025-3-22 16:52:08
http://reply.papertrans.cn/83/8275/827437/827437_6.png培养 发表于 2025-3-22 19:05:50
http://reply.papertrans.cn/83/8275/827437/827437_7.png下垂 发表于 2025-3-23 01:02:47
,Representations of the Groups ,(1,1) and ,(2, ℝ) in Mixed Bases. The Hypergeometric Function,hich diagonalizes the operators .(g(.)), .(.) = diag(./2, ./2). Now we study other realizations of these representations. It will be convenient for us to consider representations . of the group .(2, ℝ) which is isomorphic to .(1, 1). Subgroups and decompositions, considered below, have simpler form鬼魂 发表于 2025-3-23 01:46:23
http://reply.papertrans.cn/83/8275/827437/827437_9.png强制令 发表于 2025-3-23 08:13:47
978-94-010-5566-6Springer Science+Business Media Dordrecht 1991