驱逐 发表于 2025-3-21 17:45:00
书目名称Representation Theory of Reductive Groups影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0827417<br><br> <br><br>书目名称Representation Theory of Reductive Groups影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0827417<br><br> <br><br>书目名称Representation Theory of Reductive Groups网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0827417<br><br> <br><br>书目名称Representation Theory of Reductive Groups网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0827417<br><br> <br><br>书目名称Representation Theory of Reductive Groups被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0827417<br><br> <br><br>书目名称Representation Theory of Reductive Groups被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0827417<br><br> <br><br>书目名称Representation Theory of Reductive Groups年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0827417<br><br> <br><br>书目名称Representation Theory of Reductive Groups年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0827417<br><br> <br><br>书目名称Representation Theory of Reductive Groups读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0827417<br><br> <br><br>书目名称Representation Theory of Reductive Groups读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0827417<br><br> <br><br>inspired 发表于 2025-3-21 20:52:02
0743-1643 CONTENTS J. Arthur, Multipliers and a Paley-Wiener theorem for real reductive groups .......................................... .978-0-8176-3135-2978-1-4684-6730-7Series ISSN 0743-1643 Series E-ISSN 2296-505XHost142 发表于 2025-3-22 01:45:48
Conference proceedings 1983 in submitting their manuscripts, and to Carla Curtis, Karen Edge, and Katherine Ruth, for typing the manuscripts which were contributed. v CONTENTS J. Arthur, Multipliers and a Paley-Wiener theorem for real reductive groups .......................................... .勤劳 发表于 2025-3-22 07:03:50
978-0-8176-3135-2Birkhäuser Boston, Inc. 1983运气 发表于 2025-3-22 11:15:15
Representation Theory of Reductive Groups978-1-4684-6730-7Series ISSN 0743-1643 Series E-ISSN 2296-505XFriction 发表于 2025-3-22 15:28:52
Progress in Mathematicshttp://image.papertrans.cn/r/image/827417.jpg修剪过的树篱 发表于 2025-3-22 18:50:32
https://doi.org/10.1007/978-1-4684-6730-7Group representation; cohomology; lie group; representation theory技术 发表于 2025-3-22 22:27:46
Weighted Orbital Integrals,y that rank G = rank K so that G has discrete series representations. Then Harish-Chandra has proved the following theorem relating orbital integrals of matrix coefficients and characters for discrete series representations.社团 发表于 2025-3-23 02:52:37
,All Supercuspidal Representations of SLℓ over a P-Adic Field are Induced,ions of the absolute Weil group W. of F should parameterize naturally the admissible, irreducible (nonspecial) representations of G, and that, in particular, the ., n-dimensional representations of W. should correspond under this parameterization to the irreducible supercuspidal representations of G.流逝 发表于 2025-3-23 06:43:35
http://reply.papertrans.cn/83/8275/827417/827417_10.png