mentor
发表于 2025-3-21 19:55:54
书目名称Representation Theory of Finite Groups: a Guidebook影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0827415<br><br> <br><br>书目名称Representation Theory of Finite Groups: a Guidebook影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0827415<br><br> <br><br>书目名称Representation Theory of Finite Groups: a Guidebook网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0827415<br><br> <br><br>书目名称Representation Theory of Finite Groups: a Guidebook网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0827415<br><br> <br><br>书目名称Representation Theory of Finite Groups: a Guidebook被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0827415<br><br> <br><br>书目名称Representation Theory of Finite Groups: a Guidebook被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0827415<br><br> <br><br>书目名称Representation Theory of Finite Groups: a Guidebook年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0827415<br><br> <br><br>书目名称Representation Theory of Finite Groups: a Guidebook年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0827415<br><br> <br><br>书目名称Representation Theory of Finite Groups: a Guidebook读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0827415<br><br> <br><br>书目名称Representation Theory of Finite Groups: a Guidebook读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0827415<br><br> <br><br>
abreast
发表于 2025-3-21 23:03:43
http://reply.papertrans.cn/83/8275/827415/827415_2.png
CHART
发表于 2025-3-22 01:12:47
http://reply.papertrans.cn/83/8275/827415/827415_3.png
epicondylitis
发表于 2025-3-22 05:45:01
The Basics,stly to fix notation. We do the module theory first, seeing .-modules and their basic properties. Then we proceed onto character theory, and see the contents of a typical undergraduate course at a U.K. university; orthogonality relations, tensor products, the Artin–Wedderburn theorem, and so on. We
名字
发表于 2025-3-22 11:28:31
http://reply.papertrans.cn/83/8275/827415/827415_5.png
南极
发表于 2025-3-22 14:35:25
Modules, of modules, and the stable and derived categories. We start with projective modules, and then look at vertices and sources. We then consider the Green correspondence. We define Morita equivalences then study endotrivial modules. Finally we looks at extensions, stable equivalences and then derived e
巩固
发表于 2025-3-22 20:53:05
The Local-Global Principle,ach of Brauer’s height-zero conjecture, the McKay and Alperin–McKay conjectures, Alperin’s weight conjecture, Broué’s abelian defect group conjecture, Donovan’s and Puig’s conjectures, Feit’s conjecture, and finally Brauer’s .(.)-conjecture. In each case we summarize what is known about the conjectu
极小
发表于 2025-3-22 23:35:02
Blocks with Cyclic Defect Groups,he decomposition matrix of the block, then Ext. between simple modules in the block, and indeed the Morita equivalence type of the block (but not the source algebra). We then construct Brauer tree algebras, which are basic algebras that are Morita equivalent to blocks with cyclic defect groups. Afte
aspect
发表于 2025-3-23 03:16:21
http://reply.papertrans.cn/83/8275/827415/827415_9.png
杀子女者
发表于 2025-3-23 08:58:19
http://reply.papertrans.cn/83/8275/827415/827415_10.png