你太谦虚
发表于 2025-3-21 19:52:47
书目名称Relationale Datenbanken影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0826130<br><br> <br><br>书目名称Relationale Datenbanken影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0826130<br><br> <br><br>书目名称Relationale Datenbanken网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0826130<br><br> <br><br>书目名称Relationale Datenbanken网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0826130<br><br> <br><br>书目名称Relationale Datenbanken被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0826130<br><br> <br><br>书目名称Relationale Datenbanken被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0826130<br><br> <br><br>书目名称Relationale Datenbanken年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0826130<br><br> <br><br>书目名称Relationale Datenbanken年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0826130<br><br> <br><br>书目名称Relationale Datenbanken读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0826130<br><br> <br><br>书目名称Relationale Datenbanken读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0826130<br><br> <br><br>
避开
发表于 2025-3-21 23:35:57
Andreas Meiercs, as to their expressive power on finite structures (or relational databases). Let ..(.,.) be the class of (. + 1)-th order logic formulae where all quantifiers are grouped together at the beginning of the formulae, forming . alternating blocks of consecutive existential and universal quantifiers,
重力
发表于 2025-3-22 02:27:11
Andreas Meierers are able to reason about a priori knowledge and the answers to previous queries. Previous foundational work simply assumes that the control mechanism can solve the arising entailment problems (no matter how complex they may be), and deals only with closed queries. In this paper, we overcome thes
Density
发表于 2025-3-22 06:41:36
http://reply.papertrans.cn/83/8262/826130/826130_4.png
转换
发表于 2025-3-22 08:57:41
http://reply.papertrans.cn/83/8262/826130/826130_5.png
Flirtatious
发表于 2025-3-22 14:00:13
Andreas Meieron for their definition is, for any given database, which is the minimum integer ., such that whenever two .-tuples satisfy the same properties which are expressible in First Order Logic with up to . variables (.), then there is an automorphism which maps each of these .-tuples onto each other? We s
行乞
发表于 2025-3-22 19:26:51
http://reply.papertrans.cn/83/8262/826130/826130_7.png
ascetic
发表于 2025-3-22 23:39:00
http://reply.papertrans.cn/83/8262/826130/826130_8.png
态学
发表于 2025-3-23 02:33:59
http://reply.papertrans.cn/83/8262/826130/826130_9.png
ACME
发表于 2025-3-23 05:40:16
http://reply.papertrans.cn/83/8262/826130/826130_10.png