expenditure 发表于 2025-3-21 19:02:12

书目名称Reinforcement Learning From Scratch影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0825936<br><br>        <br><br>书目名称Reinforcement Learning From Scratch影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0825936<br><br>        <br><br>书目名称Reinforcement Learning From Scratch网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0825936<br><br>        <br><br>书目名称Reinforcement Learning From Scratch网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0825936<br><br>        <br><br>书目名称Reinforcement Learning From Scratch被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0825936<br><br>        <br><br>书目名称Reinforcement Learning From Scratch被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0825936<br><br>        <br><br>书目名称Reinforcement Learning From Scratch年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0825936<br><br>        <br><br>书目名称Reinforcement Learning From Scratch年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0825936<br><br>        <br><br>书目名称Reinforcement Learning From Scratch读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0825936<br><br>        <br><br>书目名称Reinforcement Learning From Scratch读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0825936<br><br>        <br><br>

Allodynia 发表于 2025-3-21 23:26:57

Uwe LorenzAn introduction to reinforcement learning that is hands-on and accessible using Java and Greenfoot.Enables implementation of RL algorithms using easy-to-understand examples and implementations.Suitabl

Microgram 发表于 2025-3-22 01:08:12

978-3-031-09032-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl

BIPED 发表于 2025-3-22 05:21:56

http://reply.papertrans.cn/83/8260/825936/825936_4.png

acquisition 发表于 2025-3-22 11:19:00

http://image.papertrans.cn/r/image/825936.jpg

让步 发表于 2025-3-22 15:31:14

http://reply.papertrans.cn/83/8260/825936/825936_6.png

CLOWN 发表于 2025-3-22 17:21:29

http://reply.papertrans.cn/83/8260/825936/825936_7.png

干涉 发表于 2025-3-22 23:53:25

Artificial Neural Networks as Estimators for State Values and the Action Selection,rticular, the so-called artificial neural networks are discussed. We will also learn possibilities to use such estimators to create parameterized policies which, for a given state, can produce and improve a useful probability distribution over the available actions.

atrophy 发表于 2025-3-23 01:52:20

http://reply.papertrans.cn/83/8260/825936/825936_9.png

增长 发表于 2025-3-23 09:18:20

Basic Concepts of Reinforcement Learning,agent is and how it generates more or less intelligent behavior in an environment with its “policy.” The structure of the basic model of reinforcement learning is described and the concept of intelligence in terms of individual utility maximization is introduced. In addition, some formal means are i
页: [1] 2 3 4
查看完整版本: Titlebook: Reinforcement Learning From Scratch; Understanding Curren Uwe Lorenz Textbook 20221st edition The Editor(s) (if applicable) and The Author(