装饰 发表于 2025-3-28 15:42:08

http://reply.papertrans.cn/83/8260/825929/825929_41.png

PANIC 发表于 2025-3-28 20:37:14

Distributional RL,Chapter 2 told us that the return on the condition of state or state–action pair is a random variable, and value is the expectation of the random variable.

hereditary 发表于 2025-3-29 02:48:09

Minimize Regret,RL adapts the concept of regret in general online machine learning. First, let us review this concept in general machine learning.

为现场 发表于 2025-3-29 06:23:13

http://reply.papertrans.cn/83/8260/825929/825929_44.png

Flatter 发表于 2025-3-29 09:37:46

http://reply.papertrans.cn/83/8260/825929/825929_45.png

使苦恼 发表于 2025-3-29 12:21:08

Learn from Feedback and Imitation Learning,RL learns from reward signals. However, some tasks do not provide reward signals. This chapter will consider applying RL-alike algorithms to solve the tasks without reward signals.

ARCH 发表于 2025-3-29 17:10:34

Zhiqing XiaoIntroduces not only algorithms and mathematical theory behind them, but also implementation details and usage examples.Covers both classical and modern RL algorithms, including algorithms for large mo

CHYME 发表于 2025-3-29 22:09:11

http://reply.papertrans.cn/83/8260/825929/825929_48.png

Phagocytes 发表于 2025-3-30 01:24:59

https://doi.org/10.1007/978-981-19-4933-3Reinforcement Learning; Deep Reinforcement Learning; Machine Learning; Artificial Intelligence; Python I

allergy 发表于 2025-3-30 05:20:57

978-981-19-4935-7Beijing Huazhang Graphics & Information Co., Ltd, China Machine Press 2024
页: 1 2 3 4 [5] 6
查看完整版本: Titlebook: Reinforcement Learning; Theory and Python Im Zhiqing Xiao Book 2024 Beijing Huazhang Graphics & Information Co., Ltd, China Machine Press 2