dejected 发表于 2025-3-21 19:01:39
书目名称Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0825560<br><br> <br><br>书目名称Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0825560<br><br> <br><br>书目名称Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0825560<br><br> <br><br>书目名称Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0825560<br><br> <br><br>书目名称Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0825560<br><br> <br><br>书目名称Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0825560<br><br> <br><br>书目名称Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0825560<br><br> <br><br>书目名称Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0825560<br><br> <br><br>书目名称Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0825560<br><br> <br><br>书目名称Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0825560<br><br> <br><br>Obliterate 发表于 2025-3-21 20:51:06
Stochastic representation for , and description of the approach for determining regularity,Let . be a (2, ., .)-superprocess, that is, it satisfies the martingale problem (.). The following lemma contains a semimartingale decomposition of . which includes stochastic integrals with respect to discontinuous martingale measures.breadth 发表于 2025-3-22 02:41:38
http://reply.papertrans.cn/83/8256/825560/825560_3.pngJingoism 发表于 2025-3-22 07:45:43
Dichotomy for densities,The non-random part . ∗ ..(.) is differentiable. The continuity of ..(⋅ ) follows from the classicalinterpose 发表于 2025-3-22 09:56:06
,Pointwise Hölder exponent at a given point: proof of Theorem 1.3,Let us first give a heuristic explanation for the value of .. According to Lemmas . and ., the maximal jump at time . and spatial point . near point .. = 0 is of order ((. − .) | . | )..BLOT 发表于 2025-3-22 16:25:13
Elements of the proof of Theorem 1.5 and Proposition 1.6,The spectrum of singularities of .. coincides with that of .. Consequently, to prove Theorem ., we have to determine Hausdorff dimensions of the sets . and this is done in the next two sections.JIBE 发表于 2025-3-22 17:54:49
Leonid Mytnik,Vitali WachtelThe book may serve as an introductory text for a graduate course.Self-contained presentation of regularity properties of stable superprocesses and proofs of main results.Only book discussing multifracsubordinate 发表于 2025-3-22 23:54:40
http://reply.papertrans.cn/83/8256/825560/825560_8.pngSHOCK 发表于 2025-3-23 02:18:16
SpringerBriefs in Probability and Mathematical Statisticshttp://image.papertrans.cn/r/image/825560.jpgpacket 发表于 2025-3-23 07:31:10
http://reply.papertrans.cn/83/8256/825560/825560_10.png