Pessimistic 发表于 2025-3-21 17:16:35
书目名称Regular Functions of a Quaternionic Variable影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0825539<br><br> <br><br>书目名称Regular Functions of a Quaternionic Variable影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0825539<br><br> <br><br>书目名称Regular Functions of a Quaternionic Variable网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0825539<br><br> <br><br>书目名称Regular Functions of a Quaternionic Variable网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0825539<br><br> <br><br>书目名称Regular Functions of a Quaternionic Variable被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0825539<br><br> <br><br>书目名称Regular Functions of a Quaternionic Variable被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0825539<br><br> <br><br>书目名称Regular Functions of a Quaternionic Variable年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0825539<br><br> <br><br>书目名称Regular Functions of a Quaternionic Variable年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0825539<br><br> <br><br>书目名称Regular Functions of a Quaternionic Variable读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0825539<br><br> <br><br>书目名称Regular Functions of a Quaternionic Variable读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0825539<br><br> <br><br>善变 发表于 2025-3-22 00:05:14
http://reply.papertrans.cn/83/8256/825539/825539_2.pngBenzodiazepines 发表于 2025-3-22 03:50:44
Infinite Products,The aim of this chapter is proving the Weierstrass Factorization Theorem for quaternionic entire functions. To do so, we introduce several tools: we consider infinite (pointwise and) regular products and we study their convergence, using the principal branch of the quaternionic logarithm.咽下 发表于 2025-3-22 08:10:33
http://reply.papertrans.cn/83/8256/825539/825539_4.png织物 发表于 2025-3-22 11:36:39
Integral Representations,Regular quaternionic functions inherit a version of the Cauchy Theorem from the holomorphic complex functions. Let us begin with some notations.Armory 发表于 2025-3-22 13:56:13
Maximum Modulus Theorem and Applications,The complex Maximum Modulus Principle has a perfect analog for regular functions, proven with the aid of the Splitting Lemma ..CUMB 发表于 2025-3-22 19:28:43
http://reply.papertrans.cn/83/8256/825539/825539_7.pngNoctambulant 发表于 2025-3-22 23:33:54
Generalizations,After the introduction of the notion of (slice) regular quaternionic function, the same approach was adopted over the algebra of octonions . in [.] and the Clifford algebra . in [.].话 发表于 2025-3-23 02:09:17
Function Theory Over Non-symmetric Slice Domains,This chapter turns back to the study of regular functions . initiated in Sect. .. While Chaps. .–. focused on the case when Ω is a symmetric slice domain, we now consider slice domains in general (dropping the symmetry hypothesis).CHIDE 发表于 2025-3-23 07:27:27
http://reply.papertrans.cn/83/8256/825539/825539_10.png