omnibus 发表于 2025-3-25 04:23:25
Reflection Positivity and Stochastic Processes, concept of a .-measure space generalizing Klein’s Osterwalder–Schrader path spaces for .. A key result is the correspondence between .-measure spaces and the corresponding positive semigroup structures on the Hilbert space ..SUE 发表于 2025-3-25 08:12:32
http://reply.papertrans.cn/83/8247/824695/824695_22.pngLUDE 发表于 2025-3-25 13:34:16
http://reply.papertrans.cn/83/8247/824695/824695_23.png吞吞吐吐 发表于 2025-3-25 17:10:50
Integration of Lie Algebra Representations,n, but we shall see below that in the reflection positive contexts, where the Hilbert spaces are mostly constructed from .-invariant positive definite kernels or positive definite .-invariant distributions, there are natural assumptions that apply in all cases that we consider.Afflict 发表于 2025-3-25 23:31:03
http://reply.papertrans.cn/83/8247/824695/824695_25.png使更活跃 发表于 2025-3-26 03:26:11
http://reply.papertrans.cn/83/8247/824695/824695_26.pngBiguanides 发表于 2025-3-26 07:21:08
http://reply.papertrans.cn/83/8247/824695/824695_27.png处理 发表于 2025-3-26 10:31:05
Reflection Positive Hilbert Spaces,ert space ., a unitary involution . on . and a closed subspace . which is . in the sense that . for .. This structure immediately leads to a new Hilbert space . and a linear map . with dense range. When the so-called Markov condition is satisfied, there even exists a closed subspace . mapped isometrAWL 发表于 2025-3-26 15:55:15
http://reply.papertrans.cn/83/8247/824695/824695_29.pngCOKE 发表于 2025-3-26 19:35:28
http://reply.papertrans.cn/83/8247/824695/824695_30.png