Rodent 发表于 2025-3-23 10:22:16
http://reply.papertrans.cn/83/8241/824023/824023_11.png女歌星 发表于 2025-3-23 14:45:36
http://reply.papertrans.cn/83/8241/824023/824023_12.pngALT 发表于 2025-3-23 19:05:59
http://reply.papertrans.cn/83/8241/824023/824023_13.pngconcert 发表于 2025-3-23 23:25:50
http://reply.papertrans.cn/83/8241/824023/824023_14.pngimplore 发表于 2025-3-24 05:10:04
The Genesis of Quadratic Reciprocity,und very early on (see ) — in connection with the problem of characterizing perfect squares — the history of modern number theory starts with the editions of the books of Diophantus, in particular with the commented edition by Bachet in 1621.评论性 发表于 2025-3-24 09:44:08
http://reply.papertrans.cn/83/8241/824023/824023_16.png鬼魂 发表于 2025-3-24 12:21:49
http://reply.papertrans.cn/83/8241/824023/824023_17.pngKaleidoscope 发表于 2025-3-24 16:46:45
http://reply.papertrans.cn/83/8241/824023/824023_18.png不法行为 发表于 2025-3-24 19:29:03
http://reply.papertrans.cn/83/8241/824023/824023_19.pngCAPE 发表于 2025-3-25 00:13:31
Eisenstein Reciprocity,t the unique factorization theorem fails to hold for the rings ℤ[ζ.], was overcome by Kummer through the invention of his ideal numbers. The direct generalization of the proofs for cubic and quartic reciprocity, however, did not yield the general reciprocity theorem for .-th powers: indeed, the most