Rodent
发表于 2025-3-23 10:22:16
http://reply.papertrans.cn/83/8241/824023/824023_11.png
女歌星
发表于 2025-3-23 14:45:36
http://reply.papertrans.cn/83/8241/824023/824023_12.png
ALT
发表于 2025-3-23 19:05:59
http://reply.papertrans.cn/83/8241/824023/824023_13.png
concert
发表于 2025-3-23 23:25:50
http://reply.papertrans.cn/83/8241/824023/824023_14.png
implore
发表于 2025-3-24 05:10:04
The Genesis of Quadratic Reciprocity,und very early on (see ) — in connection with the problem of characterizing perfect squares — the history of modern number theory starts with the editions of the books of Diophantus, in particular with the commented edition by Bachet in 1621.
评论性
发表于 2025-3-24 09:44:08
http://reply.papertrans.cn/83/8241/824023/824023_16.png
鬼魂
发表于 2025-3-24 12:21:49
http://reply.papertrans.cn/83/8241/824023/824023_17.png
Kaleidoscope
发表于 2025-3-24 16:46:45
http://reply.papertrans.cn/83/8241/824023/824023_18.png
不法行为
发表于 2025-3-24 19:29:03
http://reply.papertrans.cn/83/8241/824023/824023_19.png
CAPE
发表于 2025-3-25 00:13:31
Eisenstein Reciprocity,t the unique factorization theorem fails to hold for the rings ℤ[ζ.], was overcome by Kummer through the invention of his ideal numbers. The direct generalization of the proofs for cubic and quartic reciprocity, however, did not yield the general reciprocity theorem for .-th powers: indeed, the most