Rodent 发表于 2025-3-23 10:22:16

http://reply.papertrans.cn/83/8241/824023/824023_11.png

女歌星 发表于 2025-3-23 14:45:36

http://reply.papertrans.cn/83/8241/824023/824023_12.png

ALT 发表于 2025-3-23 19:05:59

http://reply.papertrans.cn/83/8241/824023/824023_13.png

concert 发表于 2025-3-23 23:25:50

http://reply.papertrans.cn/83/8241/824023/824023_14.png

implore 发表于 2025-3-24 05:10:04

The Genesis of Quadratic Reciprocity,und very early on (see ) — in connection with the problem of characterizing perfect squares — the history of modern number theory starts with the editions of the books of Diophantus, in particular with the commented edition by Bachet in 1621.

评论性 发表于 2025-3-24 09:44:08

http://reply.papertrans.cn/83/8241/824023/824023_16.png

鬼魂 发表于 2025-3-24 12:21:49

http://reply.papertrans.cn/83/8241/824023/824023_17.png

Kaleidoscope 发表于 2025-3-24 16:46:45

http://reply.papertrans.cn/83/8241/824023/824023_18.png

不法行为 发表于 2025-3-24 19:29:03

http://reply.papertrans.cn/83/8241/824023/824023_19.png

CAPE 发表于 2025-3-25 00:13:31

Eisenstein Reciprocity,t the unique factorization theorem fails to hold for the rings ℤ[ζ.], was overcome by Kummer through the invention of his ideal numbers. The direct generalization of the proofs for cubic and quartic reciprocity, however, did not yield the general reciprocity theorem for .-th powers: indeed, the most
页: 1 [2] 3 4 5
查看完整版本: Titlebook: Reciprocity Laws; From Euler to Eisens Franz Lemmermeyer Book 2000 Springer-Verlag Berlin Heidelberg 2000 Algebra.Elliptic functions.Gaus a