minutia
发表于 2025-3-21 18:07:15
书目名称Recent Trends in Dynamical Systems影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0823433<br><br> <br><br>书目名称Recent Trends in Dynamical Systems影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0823433<br><br> <br><br>书目名称Recent Trends in Dynamical Systems网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0823433<br><br> <br><br>书目名称Recent Trends in Dynamical Systems网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0823433<br><br> <br><br>书目名称Recent Trends in Dynamical Systems被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0823433<br><br> <br><br>书目名称Recent Trends in Dynamical Systems被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0823433<br><br> <br><br>书目名称Recent Trends in Dynamical Systems年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0823433<br><br> <br><br>书目名称Recent Trends in Dynamical Systems年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0823433<br><br> <br><br>书目名称Recent Trends in Dynamical Systems读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0823433<br><br> <br><br>书目名称Recent Trends in Dynamical Systems读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0823433<br><br> <br><br>
净礼
发表于 2025-3-21 21:04:05
Conference proceedings 2013ol theory- Invariant manifolds, attractors and chaos- Fluid mechanics and elasticity- Perturbations and multiscale problems- Hamiltonian dynamics and KAM theoryResearchers and graduate students in dynamical systems and related fields, including engineering, will benefit from the articles presented in this volume.
LAIR
发表于 2025-3-22 00:44:01
http://reply.papertrans.cn/83/8235/823433/823433_3.png
含沙射影
发表于 2025-3-22 05:27:32
http://reply.papertrans.cn/83/8235/823433/823433_4.png
Genistein
发表于 2025-3-22 09:25:25
http://reply.papertrans.cn/83/8235/823433/823433_5.png
性别
发表于 2025-3-22 13:00:42
http://reply.papertrans.cn/83/8235/823433/823433_6.png
athlete’s-foot
发表于 2025-3-22 20:07:11
http://reply.papertrans.cn/83/8235/823433/823433_7.png
ALIBI
发表于 2025-3-22 23:56:50
http://reply.papertrans.cn/83/8235/823433/823433_8.png
不自然
发表于 2025-3-23 01:47:56
http://reply.papertrans.cn/83/8235/823433/823433_9.png
thrombosis
发表于 2025-3-23 06:38:52
Local Lyapunov Functions for Periodic and Finite-Time ODEs is a classical way to construct a global Lyapunov function by solving a matrix equation. Consequently, the same function is a local Lyapunov function for a nonlinear system.In this paper, we generalise these results to time-periodic and, in particular, finite-time systems with an exponentially attr