mobility 发表于 2025-3-21 16:16:15
书目名称Recent Trends in Artificial Intelligence and IoT影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0823401<br><br> <br><br>书目名称Recent Trends in Artificial Intelligence and IoT影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0823401<br><br> <br><br>书目名称Recent Trends in Artificial Intelligence and IoT网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0823401<br><br> <br><br>书目名称Recent Trends in Artificial Intelligence and IoT网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0823401<br><br> <br><br>书目名称Recent Trends in Artificial Intelligence and IoT被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0823401<br><br> <br><br>书目名称Recent Trends in Artificial Intelligence and IoT被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0823401<br><br> <br><br>书目名称Recent Trends in Artificial Intelligence and IoT年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0823401<br><br> <br><br>书目名称Recent Trends in Artificial Intelligence and IoT年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0823401<br><br> <br><br>书目名称Recent Trends in Artificial Intelligence and IoT读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0823401<br><br> <br><br>书目名称Recent Trends in Artificial Intelligence and IoT读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0823401<br><br> <br><br>窝转脊椎动物 发表于 2025-3-21 21:01:53
http://reply.papertrans.cn/83/8235/823401/823401_2.png可耕种 发表于 2025-3-22 00:26:39
ral and problem oriented way. Recently so called metric or real-time temporal logics have been proposed for the specification of real-time systems, for which not only qualitative but also quantitative temporal properties are very important. In this work we investigate a subset of metric temporal HorIndent 发表于 2025-3-22 06:19:38
http://reply.papertrans.cn/83/8235/823401/823401_4.pngfertilizer 发表于 2025-3-22 10:33:16
http://reply.papertrans.cn/83/8235/823401/823401_5.png持久 发表于 2025-3-22 15:11:39
http://reply.papertrans.cn/83/8235/823401/823401_6.pngASSET 发表于 2025-3-22 18:57:44
Lung Disease Classification Using CNN-Based Trained Models from CXR Imageccuracy to that of three popular pre-trained models, including ResNet-50, Vgg-16, and Vgg-19. The VGG-16, VGG-19 and ResNet-50 CNN-based pre-trained models also achieved an accuracy of 95.76%, 92.84%, and 96.27%, respectively in classification. The results demonstrated that the cascaded feature gene谆谆教诲 发表于 2025-3-22 21:45:27
http://reply.papertrans.cn/83/8235/823401/823401_8.pngCHIP 发表于 2025-3-23 02:12:22
Meta-transfer Learning for Contextual Emotion Detection in Face Affirmationbile Net-V2 model with the transfer learning strategy to speed up the generation time and improve the accuracy of emotion detection. In order to improve upon the current method, we have compiled a large CIFE data collection from the relevant literature. One of the best outcomes for emotion detectionApraxia 发表于 2025-3-23 08:16:33
http://reply.papertrans.cn/83/8235/823401/823401_10.png