拖累 发表于 2025-3-21 18:21:19

书目名称Recent Progress in Multivariate Approximation影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0823318<br><br>        <br><br>书目名称Recent Progress in Multivariate Approximation影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0823318<br><br>        <br><br>书目名称Recent Progress in Multivariate Approximation网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0823318<br><br>        <br><br>书目名称Recent Progress in Multivariate Approximation网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0823318<br><br>        <br><br>书目名称Recent Progress in Multivariate Approximation被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0823318<br><br>        <br><br>书目名称Recent Progress in Multivariate Approximation被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0823318<br><br>        <br><br>书目名称Recent Progress in Multivariate Approximation年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0823318<br><br>        <br><br>书目名称Recent Progress in Multivariate Approximation年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0823318<br><br>        <br><br>书目名称Recent Progress in Multivariate Approximation读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0823318<br><br>        <br><br>书目名称Recent Progress in Multivariate Approximation读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0823318<br><br>        <br><br>

Fecal-Impaction 发表于 2025-3-22 00:04:47

https://doi.org/10.1007/978-3-0348-8272-9Applied Mathematics; Computer; Division; computer science; cubature; equation; function; mathematics

放肆的你 发表于 2025-3-22 01:56:25

http://reply.papertrans.cn/83/8234/823318/823318_3.png

傀儡 发表于 2025-3-22 08:13:16

Recent Progress in Multivariate Approximation978-3-0348-8272-9Series ISSN 0373-3149 Series E-ISSN 2296-6072

MEAN 发表于 2025-3-22 09:18:09

Jochen W. Schmidt in Memoriam,Prof. Dr. Jochen W. Schmidt died on May 14, 2000. His death came unexpectedly while he was still actively serving the mathematical community just before leaving for the conference on approximation theory in Nashville, Tennessee.

羞辱 发表于 2025-3-22 14:32:02

Best Approximation of Polynomials on the Sphere and on the Ball,In this paper an approach for finding polynomials of minimum deviation from zero on the sphere and on the ball of .—dimensional Euclidean space is described.

痛打 发表于 2025-3-22 17:33:21

The Sign of a Harmonic Function Near a Zero,We fix a point .. in ℝ., where . ≥ 2, and define ..

Amorous 发表于 2025-3-22 22:03:00

http://reply.papertrans.cn/83/8234/823318/823318_8.png

骚动 发表于 2025-3-23 02:26:36

http://reply.papertrans.cn/83/8234/823318/823318_9.png

Anonymous 发表于 2025-3-23 05:32:25

,Note on d—Extremal Configurations for the Sphere in ℝ d+1,It is shown that d-extremal configurations of . points on the unit sphere in ℝ., i.e., points minimizing energy with respect to the Riesz kernel∣. –.∣.., are asymptotically equidistributed as.→∞.
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Recent Progress in Multivariate Approximation; 4th International Co Werner Haussmann,Kurt Jetter,Manfred Reimer Conference proceedings 2001