增减字母法 发表于 2025-3-28 15:31:37
Recent Advances in Broadband Dielectric SpectroscopyOpponent 发表于 2025-3-28 21:53:15
http://reply.papertrans.cn/83/8227/822630/822630_42.pngPericarditis 发表于 2025-3-29 02:43:16
Ralf Metzler-Simulation modelliert er die Wahrscheinlichkeitsverteilung des künftigen operativen Cash Flows und entwickelt damit ein Instrument für das interne Risikomanage978-3-8349-1602-0978-3-8349-9505-6Series ISSN 2945-8390 Series E-ISSN 2945-8404愤慨一下 发表于 2025-3-29 04:21:11
http://reply.papertrans.cn/83/8227/822630/822630_44.pngdithiolethione 发表于 2025-3-29 09:39:37
Dielectric Relaxation of Water in Complex Systems,structural properties of the water in complex system. It is also shown how the model describes the state of water in two porous silica glasses and in two different types of aqueous solutions: ionic, and non-ionic. The complex dielectric spectra of a series of solutions of sodium chloride and potassi使隔离 发表于 2025-3-29 13:59:15
http://reply.papertrans.cn/83/8227/822630/822630_46.pngMerited 发表于 2025-3-29 18:09:49
Applications and Implications of Fractional Dynamics for Dielectric Relaxation,pringer, Berlin, p 215, 2000; Hilfer, Fractional time evolution. In: Hilfer (ed) Applications of fractional calculus in physics. World Scientific, Singapore, p 87, 2000; Hilfer, Remarks on fractional time. In: Castell and Ischebeck (eds) Time, quantum and information. Springer, Berlin, p 235, 2003;Enthralling 发表于 2025-3-29 21:04:06
http://reply.papertrans.cn/83/8227/822630/822630_48.png无法解释 发表于 2025-3-30 03:30:09
Conference proceedings 2013eneous on the macroscopic scale, they usually possess a certain degree of order on an intermediate, or mesoscopic, scale due to the delicate balance of interaction and thermal effects. In the present Volume it is shown how the dielectric spectroscopy studies of complex systems can be applied to deteCarminative 发表于 2025-3-30 07:55:31
Fractional Klein-Kramers Equations: Subdiffusive and Superdiffusive Cases,, .) to find the test particle with velocity . at position . at time .. We here summarise generalisations of this equation to anomalous diffusion processes. These fractional Klein-Kramers equations describe either subdiffusive or superdiffusive processes.