Rinne-Test 发表于 2025-3-23 10:25:59

http://reply.papertrans.cn/83/8222/822127/822127_11.png

我邪恶 发表于 2025-3-23 16:47:42

Elements of Real Analysisillation (VMO) functions, the Calderón–Zygmund decomposition (Theorem .), the John–Nirenberg inequality (Theorem .), the Hardy–Littlewood maximal function (Theorem .), sharp functions (Theorem .) and spherical harmonics (Theorem .).

无力更进 发表于 2025-3-23 19:15:26

http://reply.papertrans.cn/83/8222/822127/822127_13.png

Robust 发表于 2025-3-23 23:02:53

http://reply.papertrans.cn/83/8222/822127/822127_14.png

watertight, 发表于 2025-3-24 04:55:27

http://reply.papertrans.cn/83/8222/822127/822127_15.png

Petechiae 发表于 2025-3-24 10:01:14

Calderón–Zygmund Kernels and Their Commutatorsorks in modern history of analysis. The first main result (Theorem .) asserts the existence of singular integral operators and the second main result (Theorem .) concerns commutators of bounded mean oscillation functions (BMO) and singular integral operators. It should be emphasized that singular in

无能的人 发表于 2025-3-24 12:07:36

Calderón–Zygmund Variable Kernels and Their Commutatorsns and singular integral operators (Theorems 11.2 and 11.3), generalizing Theorems 10.2 and 10.3 in Chap. 10. The main idea of proof is to reduce the variable kernel case to the constant kernel case. This is done by expanding the kernel into a series of spherical harmonics (Theorem 4.41), each term

Bernstein-test 发表于 2025-3-24 18:01:01

http://reply.papertrans.cn/83/8222/822127/822127_18.png

mitten 发表于 2025-3-24 19:40:25

http://reply.papertrans.cn/83/8222/822127/822127_19.png

狗舍 发表于 2025-3-24 23:39:27

Calderón–Zygmund Kernels and Boundary Estimates2]). The desired global . estimate (12.3) is a consequence of the explicit boundary representation formula (14.2) for the solutions of the homogeneous Dirichlet problem and an . boundedness of some singular integral operators and boundary commutators in the boundary representation formula (14.2) (Th
页: 1 [2] 3 4 5 6 7
查看完整版本: Titlebook: Real Analysis Methods for Markov Processes; Singular Integrals a Kazuaki Taira Book 2024 The Editor(s) (if applicable) and The Author(s), u