使害羞
发表于 2025-3-25 04:10:41
Infinite Sequences III,In Theorem 4.10, we proved that for a sequence to converge, a necessary condition is the boundedness of the sequence, and in our example of the sequence (−1)., we saw that boundedness is not a sufficient condition for convergence.
Gourmet
发表于 2025-3-25 08:23:49
http://reply.papertrans.cn/83/8222/822121/822121_22.png
GLIDE
发表于 2025-3-25 12:46:43
http://reply.papertrans.cn/83/8222/822121/822121_23.png
Phenothiazines
发表于 2025-3-25 17:06:58
Real-Valued Functions of One Real Variable,Consider a function .. As we stated earlier, by this we mean that for every element . of the set ., there exists a corresponding . ∈ ., which is denoted by . = .(.).
反复无常
发表于 2025-3-25 22:19:26
http://reply.papertrans.cn/83/8222/822121/822121_25.png
含糊
发表于 2025-3-26 02:20:43
http://reply.papertrans.cn/83/8222/822121/822121_26.png
碎石头
发表于 2025-3-26 07:25:45
http://reply.papertrans.cn/83/8222/822121/822121_27.png
弹药
发表于 2025-3-26 09:40:22
http://reply.papertrans.cn/83/8222/822121/822121_28.png
模仿
发表于 2025-3-26 14:52:52
http://reply.papertrans.cn/83/8222/822121/822121_29.png
Oafishness
发表于 2025-3-26 18:55:32
https://doi.org/10.1007/978-1-4939-2766-1Fourier series; Stieltjes integral; continuous functions; differentiation; infinite sequences; infinite s