使害羞 发表于 2025-3-25 04:10:41

Infinite Sequences III,In Theorem 4.10, we proved that for a sequence to converge, a necessary condition is the boundedness of the sequence, and in our example of the sequence (−1)., we saw that boundedness is not a sufficient condition for convergence.

Gourmet 发表于 2025-3-25 08:23:49

http://reply.papertrans.cn/83/8222/822121/822121_22.png

GLIDE 发表于 2025-3-25 12:46:43

http://reply.papertrans.cn/83/8222/822121/822121_23.png

Phenothiazines 发表于 2025-3-25 17:06:58

Real-Valued Functions of One Real Variable,Consider a function .. As we stated earlier, by this we mean that for every element . of the set ., there exists a corresponding . ∈ ., which is denoted by . = .(.).

反复无常 发表于 2025-3-25 22:19:26

http://reply.papertrans.cn/83/8222/822121/822121_25.png

含糊 发表于 2025-3-26 02:20:43

http://reply.papertrans.cn/83/8222/822121/822121_26.png

碎石头 发表于 2025-3-26 07:25:45

http://reply.papertrans.cn/83/8222/822121/822121_27.png

弹药 发表于 2025-3-26 09:40:22

http://reply.papertrans.cn/83/8222/822121/822121_28.png

模仿 发表于 2025-3-26 14:52:52

http://reply.papertrans.cn/83/8222/822121/822121_29.png

Oafishness 发表于 2025-3-26 18:55:32

https://doi.org/10.1007/978-1-4939-2766-1Fourier series; Stieltjes integral; continuous functions; differentiation; infinite sequences; infinite s
页: 1 2 [3] 4 5 6 7
查看完整版本: Titlebook: Real Analysis; Foundations and Func Miklós Laczkovich,Vera T. Sós Textbook 2015 Springer New York 2015 Fourier series.Stieltjes integral.co