Abbreviate 发表于 2025-3-23 12:15:41
Experimental Evaluation of Possibilistic Mechanism for Negotiation Partners Selectionservice providers and agents in the roles of service clients. After a number of negotiations have been performed a randomly chosen client negotiates with all providers and the selection mechanism is used to asses the expected utility for each provider. The predicted values and negotiated values of uBLAND 发表于 2025-3-23 16:52:52
http://reply.papertrans.cn/83/8215/821463/821463_12.png特征 发表于 2025-3-23 18:25:37
tze entbundene Energie werden. Neuerdings nimmt man an, daß schon der Verbrennungsvorgang selbst bei allen Brennstoffen der gleiche ist, nämlich die Verbrennung von Wassergas (CO + H.) und daß sich alle Brennstoffe vorher in brennreifes Wassergas wandeln müssen. Handgreiflich ist die Wandlung bei deFactual 发表于 2025-3-24 00:48:33
http://reply.papertrans.cn/83/8215/821463/821463_14.png不理会 发表于 2025-3-24 04:54:40
http://reply.papertrans.cn/83/8215/821463/821463_15.png老人病学 发表于 2025-3-24 07:42:30
http://reply.papertrans.cn/83/8215/821463/821463_16.png十字架 发表于 2025-3-24 13:47:46
A General Model for Pareto Optimal Multi-Attribute Negotiations existing negotiation models may not be able to be directly applied. Second, to even simplify the reasoning and computation in the negotiation, most of the existing literature assumes agents have relatively simple (linear additive) utility functions or binary valued issues晚间 发表于 2025-3-24 18:08:24
http://reply.papertrans.cn/83/8215/821463/821463_18.pngBmd955 发表于 2025-3-24 21:17:18
A Fuzzy Logic-Based Approach for Flexible Self-Interested Agent Team Formingtion according to some fuzzy rules. In the approach, an agent can dynamically select collaboration durations and objectives according to result of fuzzy evaluations, and choose collaboration manners more flexibly..The rest of this paper is arranged as follows. In the second section, we introduce the软弱 发表于 2025-3-25 00:40:31
A Novel Group Signature Scheme Based on Bilinear Pairings and Gap Diffie–Hellman Group. By utilizing the property of bilinear pairings and Gap Diffie–Hellman Group, our scheme is efficient and secure. Meanwhile, the length of signature of our scheme is independent on the member numbers of the group. The rest of this article is organized as follows. In Sect. 2, we introduce bilinear p