Chromatic 发表于 2025-3-23 13:30:41

Geometric Properties of Rational Sphere Maps,resting. We use Theorem 7.1 to show that the homogeneous map . solves a natural optimization problem. Namely, of all polynomial sphere maps of degree ., the volume of its image of the ball is maximized by .. We compute this volume explicitly. To prove these results, we will require some basic properties of differential forms.

Axon895 发表于 2025-3-23 15:16:11

http://reply.papertrans.cn/83/8215/821455/821455_12.png

铁塔等 发表于 2025-3-23 20:22:05

http://reply.papertrans.cn/83/8215/821455/821455_13.png

GLIB 发表于 2025-3-24 00:14:15

List of Open Problems,We provide a list of open problems; each of these is stated in the text.

Infect 发表于 2025-3-24 05:17:50

http://reply.papertrans.cn/83/8215/821455/821455_15.png

Inkling 发表于 2025-3-24 09:42:30

http://reply.papertrans.cn/83/8215/821455/821455_16.png

啪心儿跳动 发表于 2025-3-24 12:58:15

http://reply.papertrans.cn/83/8215/821455/821455_17.png

Intentional 发表于 2025-3-24 14:50:57

http://reply.papertrans.cn/83/8215/821455/821455_18.png

Matrimony 发表于 2025-3-24 21:29:43

Elementary Complex and CR Geometry,eudoconvexity. We will encounter an unbounded realization of the unit sphere, the Heisenberg group, and an algebraic variety . associated with a rational sphere map .. We move even further from the unit sphere by stating and using some results by Baouendi-Rothschild and Baouendi-Huang-Rothschild on complex analogues of the Hopf lemma.

难取悦 发表于 2025-3-24 23:10:24

http://reply.papertrans.cn/83/8215/821455/821455_20.png
页: 1 [2] 3 4 5
查看完整版本: Titlebook: Rational Sphere Maps; John P. D’Angelo Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Natu