Chromatic
发表于 2025-3-23 13:30:41
Geometric Properties of Rational Sphere Maps,resting. We use Theorem 7.1 to show that the homogeneous map . solves a natural optimization problem. Namely, of all polynomial sphere maps of degree ., the volume of its image of the ball is maximized by .. We compute this volume explicitly. To prove these results, we will require some basic properties of differential forms.
Axon895
发表于 2025-3-23 15:16:11
http://reply.papertrans.cn/83/8215/821455/821455_12.png
铁塔等
发表于 2025-3-23 20:22:05
http://reply.papertrans.cn/83/8215/821455/821455_13.png
GLIB
发表于 2025-3-24 00:14:15
List of Open Problems,We provide a list of open problems; each of these is stated in the text.
Infect
发表于 2025-3-24 05:17:50
http://reply.papertrans.cn/83/8215/821455/821455_15.png
Inkling
发表于 2025-3-24 09:42:30
http://reply.papertrans.cn/83/8215/821455/821455_16.png
啪心儿跳动
发表于 2025-3-24 12:58:15
http://reply.papertrans.cn/83/8215/821455/821455_17.png
Intentional
发表于 2025-3-24 14:50:57
http://reply.papertrans.cn/83/8215/821455/821455_18.png
Matrimony
发表于 2025-3-24 21:29:43
Elementary Complex and CR Geometry,eudoconvexity. We will encounter an unbounded realization of the unit sphere, the Heisenberg group, and an algebraic variety . associated with a rational sphere map .. We move even further from the unit sphere by stating and using some results by Baouendi-Rothschild and Baouendi-Huang-Rothschild on complex analogues of the Hopf lemma.
难取悦
发表于 2025-3-24 23:10:24
http://reply.papertrans.cn/83/8215/821455/821455_20.png