Monsoon 发表于 2025-3-21 18:31:45

书目名称Rational Points on Elliptic Curves影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0821450<br><br>        <br><br>书目名称Rational Points on Elliptic Curves影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0821450<br><br>        <br><br>书目名称Rational Points on Elliptic Curves网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0821450<br><br>        <br><br>书目名称Rational Points on Elliptic Curves网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0821450<br><br>        <br><br>书目名称Rational Points on Elliptic Curves被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0821450<br><br>        <br><br>书目名称Rational Points on Elliptic Curves被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0821450<br><br>        <br><br>书目名称Rational Points on Elliptic Curves年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0821450<br><br>        <br><br>书目名称Rational Points on Elliptic Curves年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0821450<br><br>        <br><br>书目名称Rational Points on Elliptic Curves读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0821450<br><br>        <br><br>书目名称Rational Points on Elliptic Curves读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0821450<br><br>        <br><br>

gerontocracy 发表于 2025-3-21 20:26:57

http://reply.papertrans.cn/83/8215/821450/821450_2.png

oracle 发表于 2025-3-22 04:20:33

The Group of Rational Points,In this chapter we will prove Mordell’s theorem that the group of rational points on a non-singular cubic is finitely generated. There is a tool used in the proof called the .. In brief, the height of a rational point measures how complicated the point is from the viewpoint of number theory.

发炎 发表于 2025-3-22 07:37:45

Joseph H. Silverman,John T. TateHelps students appreciate the unity of modern mathematics by stressing the interplay of algebra, geometry, analysis, and number theory.Includes a wealth of exercises.Stresses accessibility of the mate

Lipoma 发表于 2025-3-22 11:05:04

Points of Finite Order, study of points of finite order on cubic curves by looking at points of order two and order three. As usual, we will assume that our non-singular cubic curve is given by a Weierstrass equation . and that the point at infinity . is taken to be the zero element for the group law.

agnostic 发表于 2025-3-22 14:57:51

http://reply.papertrans.cn/83/8215/821450/821450_6.png

凶兆 发表于 2025-3-22 19:33:32

Integer Points on Cubic Curves,), then the set of all rational points on . forms a finitely generated abelian group. So we can get every rational point on . by starting from some finite set and adding points using the geometrically defined group law.

平躺 发表于 2025-3-22 21:45:09

http://reply.papertrans.cn/83/8215/821450/821450_8.png

龙虾 发表于 2025-3-23 02:18:47

http://reply.papertrans.cn/83/8215/821450/821450_9.png

GRACE 发表于 2025-3-23 06:27:25

0172-6056 ints on Elliptic Curves.. Topics covered include the geometry and group structure of elliptic curves, the Nagell–Lutz theorem describing points of finite order, the Mordell–Weil theorem on the finite generation978-3-319-30757-2978-3-319-18588-0Series ISSN 0172-6056 Series E-ISSN 2197-5604
页: [1] 2 3 4
查看完整版本: Titlebook: Rational Points on Elliptic Curves; Joseph H. Silverman,John T. Tate Textbook 2015Latest edition Springer International Publishing Switzer