Synapse 发表于 2025-3-23 12:16:17
Arithmetic Stratifications and Partial Eisenstein Series,ght zeta functions and the height zeta function of a stratum is of the form. where.is a “partial Eisenstein series” associated to the Schubert cell .∖. . . .. The computation of the constant term of these gives estimates that allow one to determine the abcissa of convergence of the height zeta function of the stratum.很是迷惑 发表于 2025-3-23 14:28:05
Rational Points On Cubic Surfaces,.0 contains three coplanar lines defined over k, and let.be the set of those k-rational points on.which do not lie on any line on.We show that the number of points in.with height at most. is . .(. . for any ε >0.harangue 发表于 2025-3-23 19:02:55
http://reply.papertrans.cn/83/8215/821448/821448_13.pngImmobilize 发表于 2025-3-23 23:28:47
,Fonctions ZÊta Des Hauteurs Des Espaces Fibrés,geometric constructions. More precisely, we consider locally trivial fibrations constructed from torsors under linear algebraic groups. The main problem is to understand the behaviour of the height function as one passes from fiber to fiber - a difficult problem, even though all fibers are isomorphioutrage 发表于 2025-3-24 05:24:49
Hasse principle for pencils of curves of genus one whose jacobians have a rational 2-division pointes surfaces fibrées en courbes de genre un au-dessus de la droite projective. Dans les premiers articles de cette série (plusieurs articles de Swinnerton-Dyer, un article en collaboration de Skorobogatov, Swinnerton-Dyer et l’auteur), la jacobienne de la fibre générique des surfaces considérées a toaffluent 发表于 2025-3-24 07:41:20
Enriques surfaces with a dense set of rational points,iski dense on certain Enriques surfaces defined over a number field.conditionally on the Schinzel Hypothesis (H) and the finiteness of Tate-Shafarevich groups of elliptic curves over.. It was shown by Bogomolov and Tschinkel that for any Enriques surface Y defined over a number field.there exis窃喜 发表于 2025-3-24 14:11:37
http://reply.papertrans.cn/83/8215/821448/821448_17.pngfidelity 发表于 2025-3-24 16:30:34
http://reply.papertrans.cn/83/8215/821448/821448_18.png感染 发表于 2025-3-24 22:58:12
Tamagawa Numbers of Diagonal Cubic Surfaces of Higher Rank, up to 10.thanks to a program due to D. J. Bernstein. On the other hand, there are precise conjectures concerning the constants in the asymptotics of rational points of bounded height due to Manin, Batyrev and the authors. Changing the coefficients one can obtain cubic surfaces with rank of the Pica贞洁 发表于 2025-3-25 02:45:24
http://reply.papertrans.cn/83/8215/821448/821448_20.png