Reagan 发表于 2025-3-21 20:01:47
书目名称Rarefied Gas Dynamics影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0821283<br><br> <br><br>书目名称Rarefied Gas Dynamics影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0821283<br><br> <br><br>书目名称Rarefied Gas Dynamics网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0821283<br><br> <br><br>书目名称Rarefied Gas Dynamics网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0821283<br><br> <br><br>书目名称Rarefied Gas Dynamics被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0821283<br><br> <br><br>书目名称Rarefied Gas Dynamics被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0821283<br><br> <br><br>书目名称Rarefied Gas Dynamics年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0821283<br><br> <br><br>书目名称Rarefied Gas Dynamics年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0821283<br><br> <br><br>书目名称Rarefied Gas Dynamics读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0821283<br><br> <br><br>书目名称Rarefied Gas Dynamics读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0821283<br><br> <br><br>irritation 发表于 2025-3-21 21:37:19
http://reply.papertrans.cn/83/8213/821283/821283_2.pngintangibility 发表于 2025-3-22 04:11:13
http://reply.papertrans.cn/83/8213/821283/821283_3.png定点 发表于 2025-3-22 07:27:19
Introduction,olecules cannot be followed even with the aid of the most powerful microscopes, the molecular hypothesis is nevertheless well supported. Complex polyatomic molecules, as well as individual atoms, ions, protons, electrons, etc., may all be treated as molecules.insurgent 发表于 2025-3-22 08:55:36
http://reply.papertrans.cn/83/8213/821283/821283_5.png卧虎藏龙 发表于 2025-3-22 13:04:06
General Methods of Solution of the Boltzmann Equation,ependent variables. We know that equations become markedly more difficult to solve as the number of independent variables increases. On the other hand, we saw in §2.1 that a detailed microscopic description by means of a distribution function is unnecessary in the majority of problems. It is therefoIbd810 发表于 2025-3-22 17:32:26
http://reply.papertrans.cn/83/8213/821283/821283_7.pngBUOY 发表于 2025-3-22 22:22:25
Flows at Small Knudsen Numbers,es asymptotically to a solution of the Boltzmann equation for Knudsen numbers tending to zero. However, for an arbitrarily small Knudsen number, there is a region near the boundary in which that series is not a solution of the Boltzmann equation. As we saw in §§3.6–3.8 (and this will be proved againNAG 发表于 2025-3-23 02:52:30
http://reply.papertrans.cn/83/8213/821283/821283_9.pngprick-test 发表于 2025-3-23 07:22:25
http://reply.papertrans.cn/83/8213/821283/821283_10.png