controllers 发表于 2025-3-21 18:01:32
书目名称Random Perturbations of Dynamical Systems影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0821070<br><br> <br><br>书目名称Random Perturbations of Dynamical Systems影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0821070<br><br> <br><br>书目名称Random Perturbations of Dynamical Systems网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0821070<br><br> <br><br>书目名称Random Perturbations of Dynamical Systems网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0821070<br><br> <br><br>书目名称Random Perturbations of Dynamical Systems被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0821070<br><br> <br><br>书目名称Random Perturbations of Dynamical Systems被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0821070<br><br> <br><br>书目名称Random Perturbations of Dynamical Systems年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0821070<br><br> <br><br>书目名称Random Perturbations of Dynamical Systems年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0821070<br><br> <br><br>书目名称Random Perturbations of Dynamical Systems读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0821070<br><br> <br><br>书目名称Random Perturbations of Dynamical Systems读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0821070<br><br> <br><br>头脑冷静 发表于 2025-3-21 23:54:38
http://reply.papertrans.cn/83/8211/821070/821070_2.png无聊点好 发表于 2025-3-22 01:38:57
Action Functional,We consider a random process . in the space . defined by the stochastic differential equation该得 发表于 2025-3-22 05:51:17
http://reply.papertrans.cn/83/8211/821070/821070_4.png饮料 发表于 2025-3-22 10:10:46
http://reply.papertrans.cn/83/8211/821070/821070_5.png无王时期, 发表于 2025-3-22 16:39:26
https://doi.org/10.1007/978-1-4684-0176-9Dynamisches System; Perturbation; Stochastischer Prozess; Störung (Math; ); Systems; dynamical systemsCompatriot 发表于 2025-3-22 20:16:12
http://reply.papertrans.cn/83/8211/821070/821070_7.pngEXUDE 发表于 2025-3-22 22:00:26
http://reply.papertrans.cn/83/8211/821070/821070_8.pngVaginismus 发表于 2025-3-23 02:03:42
Markov Perturbations on Large Time Intervals, Theorem 3.2 of Ch. 5 and the behavior of probabilities of large deviations from the “most probable” trajectory—the trajectory of the dynamical system . —can be described as ε → 0, by the action functional .where束缚 发表于 2025-3-23 06:40:47
Stability Under Random Perturbations,e initial conditions or of the right side of an equation. In this chapter we consider some problems concerning stability under random perturbations. First we recall the basic notions of classical stability theory. Let the dynamical system.in .. have an equilibrium position at the point .:.) = 0.