controllers 发表于 2025-3-21 18:01:32

书目名称Random Perturbations of Dynamical Systems影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0821070<br><br>        <br><br>书目名称Random Perturbations of Dynamical Systems影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0821070<br><br>        <br><br>书目名称Random Perturbations of Dynamical Systems网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0821070<br><br>        <br><br>书目名称Random Perturbations of Dynamical Systems网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0821070<br><br>        <br><br>书目名称Random Perturbations of Dynamical Systems被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0821070<br><br>        <br><br>书目名称Random Perturbations of Dynamical Systems被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0821070<br><br>        <br><br>书目名称Random Perturbations of Dynamical Systems年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0821070<br><br>        <br><br>书目名称Random Perturbations of Dynamical Systems年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0821070<br><br>        <br><br>书目名称Random Perturbations of Dynamical Systems读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0821070<br><br>        <br><br>书目名称Random Perturbations of Dynamical Systems读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0821070<br><br>        <br><br>

头脑冷静 发表于 2025-3-21 23:54:38

http://reply.papertrans.cn/83/8211/821070/821070_2.png

无聊点好 发表于 2025-3-22 01:38:57

Action Functional,We consider a random process . in the space . defined by the stochastic differential equation

该得 发表于 2025-3-22 05:51:17

http://reply.papertrans.cn/83/8211/821070/821070_4.png

饮料 发表于 2025-3-22 10:10:46

http://reply.papertrans.cn/83/8211/821070/821070_5.png

无王时期, 发表于 2025-3-22 16:39:26

https://doi.org/10.1007/978-1-4684-0176-9Dynamisches System; Perturbation; Stochastischer Prozess; Störung (Math; ); Systems; dynamical systems

Compatriot 发表于 2025-3-22 20:16:12

http://reply.papertrans.cn/83/8211/821070/821070_7.png

EXUDE 发表于 2025-3-22 22:00:26

http://reply.papertrans.cn/83/8211/821070/821070_8.png

Vaginismus 发表于 2025-3-23 02:03:42

Markov Perturbations on Large Time Intervals, Theorem 3.2 of Ch. 5 and the behavior of probabilities of large deviations from the “most probable” trajectory—the trajectory of the dynamical system . —can be described as ε → 0, by the action functional .where

束缚 发表于 2025-3-23 06:40:47

Stability Under Random Perturbations,e initial conditions or of the right side of an equation. In this chapter we consider some problems concerning stability under random perturbations. First we recall the basic notions of classical stability theory. Let the dynamical system.in .. have an equilibrium position at the point .:.) = 0.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Random Perturbations of Dynamical Systems; M. I. Freidlin,A. D. Wentzell Book 19841st edition Springer-Verlag New York Inc. 1984 Dynamisch