断岩 发表于 2025-3-21 16:36:44

书目名称Random Forests with R影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0821050<br><br>        <br><br>书目名称Random Forests with R影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0821050<br><br>        <br><br>书目名称Random Forests with R网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0821050<br><br>        <br><br>书目名称Random Forests with R网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0821050<br><br>        <br><br>书目名称Random Forests with R被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0821050<br><br>        <br><br>书目名称Random Forests with R被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0821050<br><br>        <br><br>书目名称Random Forests with R年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0821050<br><br>        <br><br>书目名称Random Forests with R年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0821050<br><br>        <br><br>书目名称Random Forests with R读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0821050<br><br>        <br><br>书目名称Random Forests with R读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0821050<br><br>        <br><br>

Traumatic-Grief 发表于 2025-3-21 21:01:05

http://reply.papertrans.cn/83/8211/821050/821050_2.png

Genetics 发表于 2025-3-22 01:49:26

http://reply.papertrans.cn/83/8211/821050/821050_3.png

巨头 发表于 2025-3-22 05:52:51

http://reply.papertrans.cn/83/8211/821050/821050_4.png

antidote 发表于 2025-3-22 09:59:17

https://doi.org/10.1007/978-3-030-56485-8Random forests; Machine learning; Classification; Regression; Nearest neighbor; Variable selection; High d

格子架 发表于 2025-3-22 15:47:44

http://reply.papertrans.cn/83/8211/821050/821050_6.png

伪证 发表于 2025-3-22 18:49:27

2197-5736 d R codes.Particularly valuable for statisticians wishing to.This book offers an application-oriented guide to random forests: a statistical learning method extensively used in many fields of application, thanks to its excellent predictive performance, but also to its flexibility, which places few r

赏心悦目 发表于 2025-3-22 21:12:22

Book 2020s to its excellent predictive performance, but also to its flexibility, which places few restrictions on the nature of the data used. Indeed, random forests can be adapted to both supervised classification problems and regression problems. In addition, they allow us to consider qualitative and quant

hypnotic 发表于 2025-3-23 03:06:54

http://reply.papertrans.cn/83/8211/821050/821050_9.png

Deject 发表于 2025-3-23 08:25:28

http://reply.papertrans.cn/83/8211/821050/821050_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Random Forests with R; Robin Genuer,Jean-Michel Poggi Book 2020 Springer Nature Switzerland AG 2020 Random forests.Machine learning.Classi