Awkward 发表于 2025-3-21 16:13:01
书目名称Ramanujan’s Notebooks影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0821016<br><br> <br><br>书目名称Ramanujan’s Notebooks影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0821016<br><br> <br><br>书目名称Ramanujan’s Notebooks网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0821016<br><br> <br><br>书目名称Ramanujan’s Notebooks网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0821016<br><br> <br><br>书目名称Ramanujan’s Notebooks被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0821016<br><br> <br><br>书目名称Ramanujan’s Notebooks被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0821016<br><br> <br><br>书目名称Ramanujan’s Notebooks年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0821016<br><br> <br><br>书目名称Ramanujan’s Notebooks年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0821016<br><br> <br><br>书目名称Ramanujan’s Notebooks读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0821016<br><br> <br><br>书目名称Ramanujan’s Notebooks读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0821016<br><br> <br><br>顾客 发表于 2025-3-21 21:18:00
Modular Equations of Higher and Composite Degrees,nd 7 were derived. Modular equations of degrees 11, 13, 17, 19, 23, 31, 47, and 71 are established in this chapter. Also, modular equations of composite degree, or “mixed” modular equations, are studied. Most of the equations of the latter type involve four distinct moduli, and so we begin by defining such a modular equation.从容 发表于 2025-3-22 02:46:53
978-1-4612-6963-2Springer Science+Business Media New York1991jettison 发表于 2025-3-22 07:56:22
http://reply.papertrans.cn/83/8211/821016/821016_4.png关节炎 发表于 2025-3-22 09:25:14
Eisenstein Series,Chapter 21 concludes the organized portion of Ramanujan’s second notebook; after Chapter 21, there are 100 pages of unorganized material. Chapter 21 constitutes only four pages and thus is the shortest chapter in the second notebook. Almost all of the previous chapters are twelve pages in length.羊齿 发表于 2025-3-22 15:20:23
http://image.papertrans.cn/r/image/821016.jpg甜瓜 发表于 2025-3-22 17:18:02
https://doi.org/10.1007/978-1-4612-0965-2Identity; equation; function; proof; theorem雄辩 发表于 2025-3-23 00:18:55
http://reply.papertrans.cn/83/8211/821016/821016_8.pngnonchalance 发表于 2025-3-23 01:29:11
http://reply.papertrans.cn/83/8211/821016/821016_9.pngNebulizer 发表于 2025-3-23 06:33:02
The Jacobian Elliptic Functions,inued in Chapter 17 with an introduction to elliptic integrals and the compilation of a large catalog of series that can be evaluated in terms of elliptic function parameters. This chapter contains further series identities depending on the theory of elliptic functions. Such results are considerably