不同 发表于 2025-3-21 18:12:57
书目名称Ramanujan‘s Lost Notebook影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0821007<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0821007<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0821007<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0821007<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0821007<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0821007<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0821007<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0821007<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0821007<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0821007<br><br> <br><br>量被毁坏 发表于 2025-3-21 22:19:10
http://reply.papertrans.cn/83/8211/821007/821007_2.png搏斗 发表于 2025-3-22 04:13:25
The Heine Transformation,E. Heine , was the first to generalize Gauss’s hypergeometric series to .-hypergeometric series by defining, for ., ., where . and where, for each nonnegative integer ., ..Anecdote 发表于 2025-3-22 05:26:50
http://reply.papertrans.cn/83/8211/821007/821007_4.png掺和 发表于 2025-3-22 10:01:49
http://reply.papertrans.cn/83/8211/821007/821007_5.png初次登台 发表于 2025-3-22 16:16:24
Well-Poised Series,Among Ramanujan’s most far-reaching and striking discoveries are the Rogers–Ramanujan identities, given for . by , . and . In the lost notebook, we find many identities of the Rogers–Ramanujan type; see, for example, Chapter 11 of our first book .Protein 发表于 2025-3-22 19:52:03
,Bailey’s Lemma and Theta Expansions,Most of the entries to be established in this chapter were originally proved in . That paper appeared before the discoveries presented in were made. It is now possible to present these results in a way that makes clear their relationship to the hierarchy of .-hypergeometric identities growing out of Bailey’s lemma .Folklore 发表于 2025-3-23 01:08:26
http://reply.papertrans.cn/83/8211/821007/821007_8.png自负的人 发表于 2025-3-23 04:55:36
Two Letters on Eisenstein Series Written from Matlock House,As we mentioned in Chapter 11, in their last joint paper, G.H. Hardy and Ramanujan , established the following remarkable formula for the coefficients of 1/...Then,Trigger-Point 发表于 2025-3-23 05:38:12
http://reply.papertrans.cn/83/8211/821007/821007_10.png