lutein 发表于 2025-3-21 18:17:59
书目名称Questions of Uniqueness and Resolution in Reconstruction from Projections影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0781836<br><br> <br><br>书目名称Questions of Uniqueness and Resolution in Reconstruction from Projections影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0781836<br><br> <br><br>书目名称Questions of Uniqueness and Resolution in Reconstruction from Projections网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0781836<br><br> <br><br>书目名称Questions of Uniqueness and Resolution in Reconstruction from Projections网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0781836<br><br> <br><br>书目名称Questions of Uniqueness and Resolution in Reconstruction from Projections被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0781836<br><br> <br><br>书目名称Questions of Uniqueness and Resolution in Reconstruction from Projections被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0781836<br><br> <br><br>书目名称Questions of Uniqueness and Resolution in Reconstruction from Projections年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0781836<br><br> <br><br>书目名称Questions of Uniqueness and Resolution in Reconstruction from Projections年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0781836<br><br> <br><br>书目名称Questions of Uniqueness and Resolution in Reconstruction from Projections读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0781836<br><br> <br><br>书目名称Questions of Uniqueness and Resolution in Reconstruction from Projections读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0781836<br><br> <br><br>CT-angiography 发表于 2025-3-21 20:20:28
https://doi.org/10.1007/978-3-642-45507-0Bildrekonstruktion; Finite; Projektion; function; proof; theoremBADGE 发表于 2025-3-22 02:23:25
http://reply.papertrans.cn/79/7819/781836/781836_3.png漂亮 发表于 2025-3-22 06:01:39
Questions of Uniqueness and Resolution in Reconstruction from Projections978-3-642-45507-0Series ISSN 0341-633X Series E-ISSN 2196-9981笨重 发表于 2025-3-22 10:54:25
A Reconstruction Space Which does not Contain the Objective Function,nt from the space within which the objective function, f, lies. For practical purposes it will be sufficient to reconstruct f (or find an approximation to f) with finite resolution. Any picture in the real world has finite resolution, anyway.HOWL 发表于 2025-3-22 15:36:18
A Matrix Representation of the Problem,e, Z(n), for some known n. Under this condition the problem of reconstruction from projections is considered. The question of approximating an arbitrary objective function by an element of Z(n) is discussed in Chapters VIII and IX.Dri727 发表于 2025-3-22 18:59:33
http://reply.papertrans.cn/79/7819/781836/781836_7.png从属 发表于 2025-3-23 00:51:31
http://reply.papertrans.cn/79/7819/781836/781836_8.pngacolyte 发表于 2025-3-23 03:12:07
http://reply.papertrans.cn/79/7819/781836/781836_9.pngHectic 发表于 2025-3-23 08:27:06
A General Theory of Reconstruction from Projections and Other Mathematical Considerations Related tThe last chapter presented a particular estimate which can be used as long as certain choices are made, i. e., L. (I.) and etc. However, the theoretical background of that estimate does not depend on the particular choices made in Chapter VIII. A more general formulation is given below