珍珠无 发表于 2025-3-21 17:50:04

书目名称Quasidifferential Calculus影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0781630<br><br>        <br><br>书目名称Quasidifferential Calculus影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0781630<br><br>        <br><br>书目名称Quasidifferential Calculus网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0781630<br><br>        <br><br>书目名称Quasidifferential Calculus网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0781630<br><br>        <br><br>书目名称Quasidifferential Calculus被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0781630<br><br>        <br><br>书目名称Quasidifferential Calculus被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0781630<br><br>        <br><br>书目名称Quasidifferential Calculus年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0781630<br><br>        <br><br>书目名称Quasidifferential Calculus年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0781630<br><br>        <br><br>书目名称Quasidifferential Calculus读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0781630<br><br>        <br><br>书目名称Quasidifferential Calculus读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0781630<br><br>        <br><br>

类型 发表于 2025-3-21 23:00:07

Quasidifferentiable functions: Necessary conditions and descent directions, It is important that the optimality conditions should be expressed in a form which yields some information concerning search directions if the point under examination does not satisfy the necessary conditions. It is shown that most of the conditions discussed here provide such information.

裤子 发表于 2025-3-22 04:08:17

http://reply.papertrans.cn/79/7817/781630/781630_3.png

胆小鬼 发表于 2025-3-22 05:15:36

A directional implicit function theorem for quasidifferentiable functions,urciau, J. Warga). In this paper, we consider the case of quasidifferentiable functions. It is shown that to obtain nontrivial results it is necessary to study a directional implicit function problem (it turns out that in some directions there are several functions, while in others there are none).

污点 发表于 2025-3-22 09:28:00

http://reply.papertrans.cn/79/7817/781630/781630_5.png

Jacket 发表于 2025-3-22 15:31:02

http://reply.papertrans.cn/79/7817/781630/781630_6.png

DUST 发表于 2025-3-22 17:48:54

http://reply.papertrans.cn/79/7817/781630/781630_7.png

Resistance 发表于 2025-3-22 21:17:18

Quasidifferentiable functions: Necessary conditions and descent directions,erentials of the functions involved (i.e., the function to be optimized and a function describing the set over which optimization is to be performed). It is important that the optimality conditions should be expressed in a form which yields some information concerning search directions if the point

攀登 发表于 2025-3-23 04:37:29

Quasidifferential calculus and first-order optimality conditions in nonsmooth optimization,ly homogeneous functions representable as the sum of sublinear and superlinear functions or, equivalently, as the difference of two sublinear functions (d.s.l. functions). The resulting optimality conditions are expressed in the form of set inclusions. The idea of such approximations is exploited th

violate 发表于 2025-3-23 06:58:49

On minimizing the sum of a convex function and a concave function,ex function and a concave function. It is shown that in an .-dimensional space this problem is equivalent to the problem of minimizing a concave function on a convex set. A successive approximations method is suggested; this makes use of some of the principles of ∈-steepest-descent-type approaches.
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Quasidifferential Calculus; V. F. Demyanov,L. C. W. Dixon Book 1986Latest edition Springer-Verlag Berlin Heidelberg 1986 differential calc