无底 发表于 2025-3-25 03:50:18

http://reply.papertrans.cn/79/7817/781619/781619_21.png

水汽 发表于 2025-3-25 10:00:53

http://reply.papertrans.cn/79/7817/781619/781619_22.png

宏伟 发表于 2025-3-25 13:29:24

http://reply.papertrans.cn/79/7817/781619/781619_23.png

septicemia 发表于 2025-3-25 17:58:09

http://reply.papertrans.cn/79/7817/781619/781619_24.png

富足女人 发表于 2025-3-25 20:05:26

Eckart Viehwegse to use the consortium blockchain. Because the consortium blockchain is for small-scale groups or institutions, identity authentication is required to join the consortium blockchains. Therefore, security can be guaranteed to a certain extent. Blockchain is often considered as a distributed account

阴郁 发表于 2025-3-26 01:18:30

http://reply.papertrans.cn/79/7817/781619/781619_26.png

漂亮才会豪华 发表于 2025-3-26 06:42:55

http://reply.papertrans.cn/79/7817/781619/781619_27.png

西瓜 发表于 2025-3-26 12:25:25

Stability and Ampleness Criteria,ormulate the Hilbert-Mumford Criterion for stability and we sketch its proof. We are not able, at present, to use this criterion for the construction of moduli schemes for higher dimensional manifolds.

蔓藤图饰 发表于 2025-3-26 16:27:47

Geometric Invariant Theory on Hilbert Schemes, on . and by constructing .-linearized sheaves. We recall the proof that a geometric quotient of . by ., whenever it exists, is a coarse moduli scheme and we choose candidates for ample invertible sheaves on it.

高歌 发表于 2025-3-26 17:02:54

Allowing Certain Singularities,esponding moduli functors, as soon as the dimension of the objects is larger than two. Reducible or non-normal schemes have to be added to the objects of a moduli problem if one wants to compactify the moduli schemes. For three and higher dimensional schemes, one does not have a good candidate for such a complete moduli problem.
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Quasi-projective Moduli for Polarized Manifolds; Eckart Viehweg Book 1995 Springer-Verlag Berlin Heidelberg 1995 Algebraische Räume.Birati