导弹 发表于 2025-3-21 16:03:53
书目名称Quantum Triangulations影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0781535<br><br> <br><br>书目名称Quantum Triangulations影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0781535<br><br> <br><br>书目名称Quantum Triangulations网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0781535<br><br> <br><br>书目名称Quantum Triangulations网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0781535<br><br> <br><br>书目名称Quantum Triangulations被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0781535<br><br> <br><br>书目名称Quantum Triangulations被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0781535<br><br> <br><br>书目名称Quantum Triangulations年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0781535<br><br> <br><br>书目名称Quantum Triangulations年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0781535<br><br> <br><br>书目名称Quantum Triangulations读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0781535<br><br> <br><br>书目名称Quantum Triangulations读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0781535<br><br> <br><br>harpsichord 发表于 2025-3-21 22:28:28
http://reply.papertrans.cn/79/7816/781535/781535_2.pngabsolve 发表于 2025-3-22 02:29:34
978-3-319-67936-5Springer International Publishing AG 2017万花筒 发表于 2025-3-22 07:11:09
Quantum Triangulations978-3-319-67937-2Series ISSN 0075-8450 Series E-ISSN 1616-6361吞没 发表于 2025-3-22 11:28:06
Mauro Carfora,Annalisa MarzuoliPresents “molecular self-assembly” using triangulations of two- and three-dimensional manifolds to discuss the subtle geometrical features.Suitable for specialists as well as graduate students workingmoratorium 发表于 2025-3-22 13:46:57
http://reply.papertrans.cn/79/7816/781535/781535_6.pngPde5-Inhibitors 发表于 2025-3-22 19:52:15
Singular Euclidean Structures and Riemann Surfaces,n (due to M. Troyanov, On the moduli space of singular Euclidean surfaces. In: Papadopoulos A (ed) Handbook of teichmuller theory, vol I. IRMA lectures in mathematics and theoretical physics, vol 11. European Mathematical Society (EMS), Zurich, pp 507–540, arXiv:math/0702666v2 , 2007) that额外的事 发表于 2025-3-22 21:36:42
http://reply.papertrans.cn/79/7816/781535/781535_8.pnggiggle 发表于 2025-3-23 03:09:33
,The Quantum Geometry of Polyhedral Surfaces: Non–linear , Model and Ricci Flow,groundbreaking analysis he was somewhat inspired by the role that the effective action plays in non–linear .–model theory. This soon called attention to the fact that in QFT the Ricci flow is naturally embedded into a more general geometric flow, the renormalization group flow for non–linear . modelnutrients 发表于 2025-3-23 05:45:33
The Quantum Geometry of Polyhedral Surfaces: Variations on Strings and All That,o a geometrical mechanism which allows one to describe a polyhedral surface with .. vertices as a Riemann surface with .. punctures dressed with a field whose charges describe discretized curvatures (related to the deficit angles of the triangulation). Such a picture calls into play the (compactifie