指责 发表于 2025-3-21 18:03:26
书目名称Quantum Signatures of Chaos影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0781454<br><br> <br><br>书目名称Quantum Signatures of Chaos影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0781454<br><br> <br><br>书目名称Quantum Signatures of Chaos网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0781454<br><br> <br><br>书目名称Quantum Signatures of Chaos网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0781454<br><br> <br><br>书目名称Quantum Signatures of Chaos被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0781454<br><br> <br><br>书目名称Quantum Signatures of Chaos被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0781454<br><br> <br><br>书目名称Quantum Signatures of Chaos年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0781454<br><br> <br><br>书目名称Quantum Signatures of Chaos年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0781454<br><br> <br><br>书目名称Quantum Signatures of Chaos读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0781454<br><br> <br><br>书目名称Quantum Signatures of Chaos读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0781454<br><br> <br><br>Insul岛 发表于 2025-3-21 22:57:20
Random-Matrix Theory,splay global chaos in their classical phase spaces. Exceptions apart, all such Hamiltonian matrices of sufficiently large dimension yield the same spectral fluctuations provided they have the same group of canonical transformations (see Chap. 2).Conducive 发表于 2025-3-22 02:48:05
Dissipative Systems,hand, approach so-called strange attractors whose geometry is determined by Cantor sets and their fractal dimension. In analogy with the Hamiltonian case, the two classical possibilities of simple and strange attractors are washed out by quantum fluctuations.反复拉紧 发表于 2025-3-22 06:24:59
http://reply.papertrans.cn/79/7815/781454/781454_4.png绝缘 发表于 2025-3-22 10:56:32
http://reply.papertrans.cn/79/7815/781454/781454_5.pnglegitimate 发表于 2025-3-22 13:29:06
http://reply.papertrans.cn/79/7815/781454/781454_6.pngOverdose 发表于 2025-3-22 17:13:31
https://doi.org/10.1007/978-3-642-05428-0Chaos; Clustering; classical Hamiltonian chaos; dissipative systems; level dynamics; linear optimization;血友病 发表于 2025-3-23 00:16:23
978-3-642-26330-9Springer-Verlag Berlin Heidelberg 2010LATE 发表于 2025-3-23 01:58:55
Quantum Signatures of Chaos978-3-642-05428-0Series ISSN 0172-7389 Series E-ISSN 2198-333X典型 发表于 2025-3-23 08:29:47
Time Reversal and Unitary Symmetries,A classical Hamiltonian system is called time-reversal invariant if from any given solution .(.), .(.) of Hamilton’s equations an independent solution .′(.′), .′(.′), is obtained with t′ = −t and some operation relating .′ and .′ to the original coordinates . and momenta ..