incontestable
发表于 2025-3-21 18:04:35
书目名称Quantum Physics of Light and Matter影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0781415<br><br> <br><br>书目名称Quantum Physics of Light and Matter影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0781415<br><br> <br><br>书目名称Quantum Physics of Light and Matter网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0781415<br><br> <br><br>书目名称Quantum Physics of Light and Matter网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0781415<br><br> <br><br>书目名称Quantum Physics of Light and Matter被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0781415<br><br> <br><br>书目名称Quantum Physics of Light and Matter被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0781415<br><br> <br><br>书目名称Quantum Physics of Light and Matter年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0781415<br><br> <br><br>书目名称Quantum Physics of Light and Matter年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0781415<br><br> <br><br>书目名称Quantum Physics of Light and Matter读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0781415<br><br> <br><br>书目名称Quantum Physics of Light and Matter读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0781415<br><br> <br><br>
发誓放弃
发表于 2025-3-21 22:08:16
http://reply.papertrans.cn/79/7815/781415/781415_2.png
angina-pectoris
发表于 2025-3-22 02:22:12
http://reply.papertrans.cn/79/7815/781415/781415_3.png
objection
发表于 2025-3-22 05:20:49
https://doi.org/10.1007/978-3-319-52998-1Advanced quantum physics textbook; Hartree-Fock Variational Method; Hartree-Fock Variational Method; Ma
牛的细微差别
发表于 2025-3-22 09:38:10
http://reply.papertrans.cn/79/7815/781415/781415_5.png
mechanism
发表于 2025-3-22 16:25:20
http://reply.papertrans.cn/79/7815/781415/781415_6.png
会犯错误
发表于 2025-3-22 19:00:46
http://reply.papertrans.cn/79/7815/781415/781415_7.png
Handedness
发表于 2025-3-22 23:30:54
Many-Body Systems,In this chapter we want to analyze atoms with many electrons and, more generally, systems with many interacting identical particles.
摇晃
发表于 2025-3-23 03:12:45
Second Quantization of Matter,In this chapter we discuss the second quantization of the non-relativistic matter field, that is the Schrödinger field. We show that the Schrödinger field can be expressed as a infinite sum of harmonic oscillators.
Control-Group
发表于 2025-3-23 09:20:50
Functional Integration for the Bosonic Field,In this chapter we consider the quantum statistical mechanics of identical bosons by introducing the formalism of functional integration for the bosonic field.