frustrate 发表于 2025-3-21 19:32:33
书目名称Quantum Mechanics影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0781312<br><br> <br><br>书目名称Quantum Mechanics影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0781312<br><br> <br><br>书目名称Quantum Mechanics网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0781312<br><br> <br><br>书目名称Quantum Mechanics网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0781312<br><br> <br><br>书目名称Quantum Mechanics被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0781312<br><br> <br><br>书目名称Quantum Mechanics被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0781312<br><br> <br><br>书目名称Quantum Mechanics年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0781312<br><br> <br><br>书目名称Quantum Mechanics年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0781312<br><br> <br><br>书目名称Quantum Mechanics读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0781312<br><br> <br><br>书目名称Quantum Mechanics读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0781312<br><br> <br><br>mechanical 发表于 2025-3-21 23:16:07
http://reply.papertrans.cn/79/7814/781312/781312_2.png与野兽博斗者 发表于 2025-3-22 02:35:32
Harmonic Oscillator CalculationsFor many calculations involving 1-D harmonic oscillator wave functions, it is useful to introduce the Bargmann transform through the kernel function., where . is a complex number. Given a square-integrable function, .(.), its Bargmann transform, .(.), is given by ., where . and the integral is over the 2-D complex .-plane; i.e., wiht .=., ..Enthralling 发表于 2025-3-22 04:54:24
http://reply.papertrans.cn/79/7814/781312/781312_4.png秘密会议 发表于 2025-3-22 11:08:39
http://reply.papertrans.cn/79/7814/781312/781312_5.png令人心醉 发表于 2025-3-22 14:17:30
The Vector Space Interpretation of Quantum-Mechanical SystemsSo far, we have specified the state of a quantum-mechanical system by the wave function, , i.e., by specifying the value of the scalar function, Ψ, for all values of ., ., ., at a particular time, ..ARIA 发表于 2025-3-22 19:00:54
978-1-4612-7072-0Springer Science+Business Media New York 2000细丝 发表于 2025-3-22 23:24:09
Quantum Mechanics978-1-4612-1272-0Series ISSN 0938-037XOffbeat 发表于 2025-3-23 01:28:43
http://reply.papertrans.cn/79/7814/781312/781312_9.png容易做 发表于 2025-3-23 08:12:41
Spherical Harmonics, Orbital Angular Momentumion to construct the full set of angular functions Θ(θ) via the normalized step-down operators. Because the eigenvalue λ = λ. + 1/4 is a function of .max ≡., we will replace the index λ by the integer .. The full angular functions are the spherical harmonics..