antibody 发表于 2025-3-21 18:38:43
书目名称Quantum Groups影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0781219<br><br> <br><br>书目名称Quantum Groups影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0781219<br><br> <br><br>书目名称Quantum Groups网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0781219<br><br> <br><br>书目名称Quantum Groups网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0781219<br><br> <br><br>书目名称Quantum Groups被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0781219<br><br> <br><br>书目名称Quantum Groups被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0781219<br><br> <br><br>书目名称Quantum Groups年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0781219<br><br> <br><br>书目名称Quantum Groups年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0781219<br><br> <br><br>书目名称Quantum Groups读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0781219<br><br> <br><br>书目名称Quantum Groups读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0781219<br><br> <br><br>lanugo 发表于 2025-3-22 00:04:41
The Language of Hopf AlgebrasIn this chapter we introduce the fundamental concepts of coalgebras, bial-gebras, Hopf algebras and comodules which we shall use extensively in the sequel. We shall also prove that the algebras .(2) and .(2) of Chapter I are Hopf algebras.incarcerate 发表于 2025-3-22 01:03:11
http://reply.papertrans.cn/79/7813/781219/781219_3.png培养 发表于 2025-3-22 08:35:29
978-1-4612-6900-7Springer Science+Business Media New York 1995严厉谴责 发表于 2025-3-22 10:38:45
http://reply.papertrans.cn/79/7813/781219/781219_5.pngLAP 发表于 2025-3-22 14:08:07
0072-5285 Overview: 978-1-4612-6900-7978-1-4612-0783-2Series ISSN 0072-5285 Series E-ISSN 2197-5612使迷醉 发表于 2025-3-22 18:39:16
http://reply.papertrans.cn/79/7813/781219/781219_7.png招致 发表于 2025-3-22 21:52:31
https://doi.org/10.1007/978-1-4612-0783-2Group representation; Lie algebra; Vector space; algebra; cohomology; topology取之不竭 发表于 2025-3-23 02:21:01
Preliminaries. with determinant equal to 1]. The multiplication of matrices induces an additional structure on these algebras. This structure is one of the basic ingredients of what will be called a Hopf algebra in Chapter III. We com-plete the chapter with various concepts of ring theory to be used in the sequel. The ground field is denoted byIntact 发表于 2025-3-23 09:08:05
http://reply.papertrans.cn/79/7813/781219/781219_10.png