肿块 发表于 2025-3-28 15:06:10

http://reply.papertrans.cn/79/7811/781051/781051_41.png

修正案 发表于 2025-3-28 22:08:16

http://reply.papertrans.cn/79/7811/781051/781051_42.png

Acupressure 发表于 2025-3-29 02:32:18

http://reply.papertrans.cn/79/7811/781051/781051_43.png

不吉祥的女人 发表于 2025-3-29 05:04:40

-Binomial Coefficients and Linear Algebra over Finite Fields,In this chapter we explain an important combinatorial meaning of the .-binomial coefficients.

Sleep-Paralysis 发表于 2025-3-29 08:21:03

http://reply.papertrans.cn/79/7811/781051/781051_45.png

修饰 发表于 2025-3-29 11:28:18

-Trigonometric Functions,The .-analogues of the sine and cosine functions can be defined in anal-ogy with their well-known Euler expressions in terms of the exponential function.

保存 发表于 2025-3-29 16:28:46

http://reply.papertrans.cn/79/7811/781051/781051_47.png

overture 发表于 2025-3-29 21:03:18

http://reply.papertrans.cn/79/7811/781051/781051_48.png

小说 发表于 2025-3-30 02:05:50

,More on Heine’s Formula and the General Binomial,Inspired by (13.16) and (13.17), it is natural to generalize the notion of a .-binomial in the following way.

PHONE 发表于 2025-3-30 07:33:52

Ramanujan Product Formula,In this chapter, we apply Heine’s formula to prove a remarkable identity discovered by the Indian mathematician Ramanujan. This identity relates a . to an infinite product, and it has many interesting applications in number theory, which will be discussed in subsequent chapters.
页: 1 2 3 4 [5] 6
查看完整版本: Titlebook: Quantum Calculus; Victor Kac,Pokman Cheung Textbook 2002 Victor Kac. 2002 Derivative.Hypergeometric function.Partition.Quantum Calculus.Qu