肿块
发表于 2025-3-28 15:06:10
http://reply.papertrans.cn/79/7811/781051/781051_41.png
修正案
发表于 2025-3-28 22:08:16
http://reply.papertrans.cn/79/7811/781051/781051_42.png
Acupressure
发表于 2025-3-29 02:32:18
http://reply.papertrans.cn/79/7811/781051/781051_43.png
不吉祥的女人
发表于 2025-3-29 05:04:40
-Binomial Coefficients and Linear Algebra over Finite Fields,In this chapter we explain an important combinatorial meaning of the .-binomial coefficients.
Sleep-Paralysis
发表于 2025-3-29 08:21:03
http://reply.papertrans.cn/79/7811/781051/781051_45.png
修饰
发表于 2025-3-29 11:28:18
-Trigonometric Functions,The .-analogues of the sine and cosine functions can be defined in anal-ogy with their well-known Euler expressions in terms of the exponential function.
保存
发表于 2025-3-29 16:28:46
http://reply.papertrans.cn/79/7811/781051/781051_47.png
overture
发表于 2025-3-29 21:03:18
http://reply.papertrans.cn/79/7811/781051/781051_48.png
小说
发表于 2025-3-30 02:05:50
,More on Heine’s Formula and the General Binomial,Inspired by (13.16) and (13.17), it is natural to generalize the notion of a .-binomial in the following way.
PHONE
发表于 2025-3-30 07:33:52
Ramanujan Product Formula,In this chapter, we apply Heine’s formula to prove a remarkable identity discovered by the Indian mathematician Ramanujan. This identity relates a . to an infinite product, and it has many interesting applications in number theory, which will be discussed in subsequent chapters.