heartburn 发表于 2025-3-26 22:05:39
A Sparse Bayesian Framework for Anomaly Detection in Heterogeneous Networksry, we construct a detection system whose decision making is mostly based on a few representative examples from the training set. This provides human interpretability as expert can analyze the representative examples to understand the detection mechanism. Our experiment results show the potential of this approach.圆木可阻碍 发表于 2025-3-27 05:03:11
http://reply.papertrans.cn/79/7805/780402/780402_32.pngLymphocyte 发表于 2025-3-27 07:58:47
http://reply.papertrans.cn/79/7805/780402/780402_33.png公司 发表于 2025-3-27 09:55:58
http://reply.papertrans.cn/79/7805/780402/780402_34.pngconsolidate 发表于 2025-3-27 15:21:21
http://reply.papertrans.cn/79/7805/780402/780402_35.pngheadway 发表于 2025-3-27 18:05:35
http://reply.papertrans.cn/79/7805/780402/780402_36.png陶器 发表于 2025-3-27 23:32:59
http://reply.papertrans.cn/79/7805/780402/780402_37.pngheadlong 发表于 2025-3-28 03:01:56
http://reply.papertrans.cn/79/7805/780402/780402_38.pngchemoprevention 发表于 2025-3-28 09:33:41
Spectrum Prediction via Temporal Conditional Gaussian Random Field Model in Wideband Cognitive Radioduces the theory of Gaussian Markov Random Field to estimate the un-sensed sub-channel status. We set up a measurement system to capture the WiFi spectrum data. With the measurement data, we verify that the proposed model of Temporal Conditional Gaussian Random Field can efficient estimate the sub-cHILAR 发表于 2025-3-28 10:44:45
http://reply.papertrans.cn/79/7805/780402/780402_40.png