Pierce 发表于 2025-3-21 18:02:43

书目名称Quadratic Forms in Infinite Dimensional Vector Spaces影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0780049<br><br>        <br><br>书目名称Quadratic Forms in Infinite Dimensional Vector Spaces影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0780049<br><br>        <br><br>书目名称Quadratic Forms in Infinite Dimensional Vector Spaces网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0780049<br><br>        <br><br>书目名称Quadratic Forms in Infinite Dimensional Vector Spaces网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0780049<br><br>        <br><br>书目名称Quadratic Forms in Infinite Dimensional Vector Spaces被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0780049<br><br>        <br><br>书目名称Quadratic Forms in Infinite Dimensional Vector Spaces被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0780049<br><br>        <br><br>书目名称Quadratic Forms in Infinite Dimensional Vector Spaces年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0780049<br><br>        <br><br>书目名称Quadratic Forms in Infinite Dimensional Vector Spaces年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0780049<br><br>        <br><br>书目名称Quadratic Forms in Infinite Dimensional Vector Spaces读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0780049<br><br>        <br><br>书目名称Quadratic Forms in Infinite Dimensional Vector Spaces读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0780049<br><br>        <br><br>

atopic 发表于 2025-3-21 22:11:18

Classification of Subspaces in Spaces with Definite Forms,for all x, y ∈ k.: or k is a quaternion algebra . with k. ordered, α, β < 0 and τ being the usual “conjugation”. If τ = 1, possible only when k is commutative, then ϕ is symmetric and k = k. is ordered.

殖民地 发表于 2025-3-22 03:02:51

Introduction,s (see References to Chapter XI) there has been, as far as we know, only Kaplansky’s 1950 paper on infinite dimensional spaces pointing our way, namely in the direction of a purely algebraic theory of quadratic forms on infinite dimensional vector spaces over “arbitrary” division rings. Such a theor

Hyaluronic-Acid 发表于 2025-3-22 06:48:12

Fundamentals on Sesquilinear Forms,hat are used throughout the text. A number of fundamental definitions have been inserted in later chapters; whenever it had been possible to introduce a concept right where it is needed without interrupting the flow of ideas we have postponed its introduction.

地名表 发表于 2025-3-22 09:22:52

,Diagonalization of א0-Forms,ecomposition into mutually orthogonal lines is impossible. The problem of “normalizing” bases brings us to stability and the beginner is confronted with the first Ping-Pong style proof with its characteristic back-and-forth argument (Theorem 2). These matters are basic and their knowledge is tacitly

Malaise 发表于 2025-3-22 15:49:42

Classification of Hermitean Forms in Characteristic 2,he additive subgroups S ≔ {α ∈ k|α = εα*} and T ≔ {α + εα*|α ∈ k} of “symmetric” elements and of “traces” respectively. The factor group S/T is a k-left vectorspace under the composition λ (σ+T) = λσλ* + T (σ ∈ S, λ ∈ k). ̂: S → S/T is the canonical map.

Lucubrate 发表于 2025-3-22 20:18:48

http://reply.papertrans.cn/79/7801/780049/780049_7.png

SEMI 发表于 2025-3-22 23:53:26

http://reply.papertrans.cn/79/7801/780049/780049_8.png

上坡 发表于 2025-3-23 03:17:37

Classification of Subspaces in Spaces with Definite Forms,it follows from Dieudonné’s lemma that k is either a quadratic extension k = k. (γ) over an ordered field (k., <) with 0 > γ. ∈ k. and (x+yγ). = x-yγ for all x, y ∈ k.: or k is a quaternion algebra . with k. ordered, α, β < 0 and τ being the usual “conjugation”. If τ = 1, possible only when k is com

Brittle 发表于 2025-3-23 09:35:41

Quadratic Forms, partly overlap (cf. Example 2 in Section 3 below). For the purpose of illustration we start with the classical notion of a quadratic form . on a k-vector space E over a commutative field k of arbitrary characteristic. The map Q is called a quadratic form if 1) we have Q(λx) = λ.Q(x) for all λ ∈ k,
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Quadratic Forms in Infinite Dimensional Vector Spaces; Herbert Gross Book 1979 Springer Science+Business Media New York 1979 algebra.Divis