相互影响 发表于 2025-3-25 06:56:41
http://reply.papertrans.cn/76/7570/756955/756955_21.png高兴一回 发表于 2025-3-25 10:52:50
http://reply.papertrans.cn/76/7570/756955/756955_22.pngHumble 发表于 2025-3-25 12:15:04
Hilbertian support of a probability measure on a banach space,In this paper, we will prove the following : Let E be a real separable Banach space. Then every probability measure on E has a Hilbertian support if and only if E is isomorphic to a Hilbert space. In the case of .. (1 ≤ p < 2) we will give an explicit construction of probability measures without Hilbertian support.使激动 发表于 2025-3-25 18:31:56
978-3-540-09242-1Springer-Verlag Berlin Heidelberg 1979Ostrich 发表于 2025-3-25 23:41:02
Probability in Banach Spaces II978-3-540-35341-6Series ISSN 0075-8434 Series E-ISSN 1617-9692节省 发表于 2025-3-26 01:11:41
0075-8434 Overview: 978-3-540-09242-1978-3-540-35341-6Series ISSN 0075-8434 Series E-ISSN 1617-9692Muscularis 发表于 2025-3-26 04:38:13
http://reply.papertrans.cn/76/7570/756955/756955_27.png驳船 发表于 2025-3-26 08:44:57
http://reply.papertrans.cn/76/7570/756955/756955_28.pngFantasy 发表于 2025-3-26 12:49:47
http://reply.papertrans.cn/76/7570/756955/756955_29.pngreserve 发表于 2025-3-26 17:50:04
Charles R. Baker, Sweden, for the purpose of examining various conceptual and mathematical views of the evolution of complex systems. The stated theme of the meeting was deliberately kept vague, with only the purpose of discussing alternative mathematically based approaches to the modeling of evolving processes bei