AMASS 发表于 2025-3-21 17:11:46
书目名称Partial Differential Equations影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0741475<br><br> <br><br>书目名称Partial Differential Equations影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0741475<br><br> <br><br>书目名称Partial Differential Equations网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0741475<br><br> <br><br>书目名称Partial Differential Equations网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0741475<br><br> <br><br>书目名称Partial Differential Equations被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0741475<br><br> <br><br>书目名称Partial Differential Equations被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0741475<br><br> <br><br>书目名称Partial Differential Equations年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0741475<br><br> <br><br>书目名称Partial Differential Equations年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0741475<br><br> <br><br>书目名称Partial Differential Equations读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0741475<br><br> <br><br>书目名称Partial Differential Equations读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0741475<br><br> <br><br>blight 发表于 2025-3-21 21:24:34
http://reply.papertrans.cn/75/7415/741475/741475_2.pngILEUM 发表于 2025-3-22 04:18:18
http://reply.papertrans.cn/75/7415/741475/741475_3.png有帮助 发表于 2025-3-22 08:10:40
http://reply.papertrans.cn/75/7415/741475/741475_4.pngamplitude 发表于 2025-3-22 09:39:23
The Laplace Equation,Let Ω be a domain in .., . ≥ 2, whose boundary ∂Ω is of class ...云状 发表于 2025-3-22 14:31:02
The Double Layer Potential and Boundary Value Problems,Let ∑ be an (. − 1)-dimensional bounded surface in .. of class .. whose boundary Г ≡ ∂∑ is an (. − 2)-dimensional surface of class ... Fix .. ∈ ... and consider the cone . (∑, ..) generated by the half-lines originating at .. and passing through points of Г.神刊 发表于 2025-3-22 17:57:52
http://reply.papertrans.cn/75/7415/741475/741475_7.pngMENT 发表于 2025-3-23 01:11:54
The Heat Equation,Consider a material homogeneous body occupying a region Ω ⊂ ...We assume that ∂Ω is of class .. and let . denote its outward unit normal. We identify the body with Ω and let . > 0 be its dimensionless conductivity.柔软 发表于 2025-3-23 04:46:26
http://reply.papertrans.cn/75/7415/741475/741475_9.png无底 发表于 2025-3-23 08:39:41
Equations of First Order and Conservation Laws,A first-order quasi-linear p.d.e. is an expression of the form.where . ranges over a region Ω ⊂ .., the function .: Ω → . is of class .., and.are given smooth functions of their arguments.