MEDAL 发表于 2025-3-21 17:03:04
书目名称Orthogonal Systems and Convolution Operators影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0704714<br><br> <br><br>书目名称Orthogonal Systems and Convolution Operators影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0704714<br><br> <br><br>书目名称Orthogonal Systems and Convolution Operators网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0704714<br><br> <br><br>书目名称Orthogonal Systems and Convolution Operators网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0704714<br><br> <br><br>书目名称Orthogonal Systems and Convolution Operators被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0704714<br><br> <br><br>书目名称Orthogonal Systems and Convolution Operators被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0704714<br><br> <br><br>书目名称Orthogonal Systems and Convolution Operators年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0704714<br><br> <br><br>书目名称Orthogonal Systems and Convolution Operators年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0704714<br><br> <br><br>书目名称Orthogonal Systems and Convolution Operators读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0704714<br><br> <br><br>书目名称Orthogonal Systems and Convolution Operators读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0704714<br><br> <br><br>赤字 发表于 2025-3-21 20:29:42
,Orthogonal Polynomials and Krein’s Theorem, the scalar product in (0.2) are polynomials, called the Szegő polynomials corresponding to the weight function ω. Szegő ‘s proved that these polynomials have all their zeros in the open unit disk. This result, which we refer to as Szegő ‘s Theorem, is proved in Section 1.1.冷峻 发表于 2025-3-22 04:26:05
http://reply.papertrans.cn/71/7048/704714/704714_3.png愤慨一下 发表于 2025-3-22 07:47:22
0255-0156 was a deep theorem due to M.G. Krein along with subsequent results of Krein and H. Langer. Together with our colleagues, we have worked in this area for nearly fifteen years, and the results of our research are presented here in unified form. We are grateful to the Department of mathematics at the U复习 发表于 2025-3-22 12:10:26
http://reply.papertrans.cn/71/7048/704714/704714_5.pngIatrogenic 发表于 2025-3-22 15:01:39
http://reply.papertrans.cn/71/7048/704714/704714_6.pngEpithelium 发表于 2025-3-22 19:49:02
http://reply.papertrans.cn/71/7048/704714/704714_7.png拥护 发表于 2025-3-23 00:11:56
http://reply.papertrans.cn/71/7048/704714/704714_8.pngplasma-cells 发表于 2025-3-23 03:19:26
http://reply.papertrans.cn/71/7048/704714/704714_9.pngInstrumental 发表于 2025-3-23 07:40:47
uch systems demonstrate resilience by absorbing or recovering from major external perturbations requires both quantitative foundations and a multidisciplinary view on the topic..This book demonstrates how new methods can be used to identify the actions favouring the recovery from perturbations. Exam