energy 发表于 2025-3-21 18:38:41

书目名称Orthogonal Polynomials for Exponential Weights影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0704711<br><br>        <br><br>书目名称Orthogonal Polynomials for Exponential Weights影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0704711<br><br>        <br><br>书目名称Orthogonal Polynomials for Exponential Weights网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0704711<br><br>        <br><br>书目名称Orthogonal Polynomials for Exponential Weights网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0704711<br><br>        <br><br>书目名称Orthogonal Polynomials for Exponential Weights被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0704711<br><br>        <br><br>书目名称Orthogonal Polynomials for Exponential Weights被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0704711<br><br>        <br><br>书目名称Orthogonal Polynomials for Exponential Weights年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0704711<br><br>        <br><br>书目名称Orthogonal Polynomials for Exponential Weights年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0704711<br><br>        <br><br>书目名称Orthogonal Polynomials for Exponential Weights读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0704711<br><br>        <br><br>书目名称Orthogonal Polynomials for Exponential Weights读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0704711<br><br>        <br><br>

Licentious 发表于 2025-3-21 20:27:23

http://reply.papertrans.cn/71/7048/704711/704711_2.png

defenses 发表于 2025-3-22 04:27:59

1613-5237undoubtedly will continue to grow in importance in the future..In this monograph, the authors investigate orthogonal polynomials for exponential weights defined on a finite or infinite interval. The interval should contain 0, but need not be symmetric about 0; likewise the weight need not be even.

曲解 发表于 2025-3-22 04:59:25

http://reply.papertrans.cn/71/7048/704711/704711_4.png

耕种 发表于 2025-3-22 09:32:30

Asymptotics of Extremal Errors,r result in compact form, we need some notation. For a non-negative . : [−1,1] → ℝ, let.denote the . of .. Recall also that.where .. is the linear map of [.., a.] onto [−1,1] and .. is its inverse. Finally, let

原谅 发表于 2025-3-22 14:51:32

Further Bounds and Applications,of Lagrange interpolation, and spacing of zeros of orthogonal polynomials. We shall often need more than .∈.(.1/2). Recall from Chapter 1 that we defined .∈.(.1/2+) if both .∈.(.1/2) and for each .>1, there exists .>0 and .. such that

傻瓜 发表于 2025-3-22 17:55:04

http://reply.papertrans.cn/71/7048/704711/704711_7.png

Accede 发表于 2025-3-22 23:02:11

Eli Levin,Doron S. Lubinskychisch . denken. Doch heißt dieses Verb ursprünglich nicht .sagen. im Sinne von „.sagen, die Zukunft voraussagen“, es ist, was überraschen mag, überhaupt erst in nachchristlicher Zeit gelegentlich belegt., gibt also für die Erklärung von . direkt nichts her. Die Präposition . bedeutet in alten Verbi

Immunotherapy 发表于 2025-3-23 02:38:57

Textbook 2001 case of the weights treated in this book. In many ways, this book is the culmination of 18 years of joint work on orthogonal polynomials, drawing inspiration from the works of many researchers in the very active field of orthogonal polynomials.

混合,搀杂 发表于 2025-3-23 07:33:05

1613-5237a special case of the weights treated in this book. In many ways, this book is the culmination of 18 years of joint work on orthogonal polynomials, drawing inspiration from the works of many researchers in the very active field of orthogonal polynomials.978-1-4612-6563-4978-1-4613-0201-8Series ISSN 1613-5237 Series E-ISSN 2197-4152
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Orthogonal Polynomials for Exponential Weights; Eli Levin,Doron S. Lubinsky Textbook 2001 Springer-Verlag New York, Inc. 2001 Smooth funct